ﻻ يوجد ملخص باللغة العربية
The boson peak in metallic glasses is modeled in terms of local structural shear rearrangements. Using Eshelbys solution of the corresponding elasticity theory problem (J. D. Eshelby, Proc. Roy. Soc. A241, 376 (1957)), one can calculate the saddle point energy of such a structural rearrangement. The neighbourhood of the saddle point gives rise to soft resonant vibrational modes. One can calculate their density, their kinetic energy, their fourth order potential term and their coupling to longitudinal and transverse sound waves.
The inelastic scattering intensities of glasses and amorphous materials has a maximum at a low frequency, the so called Boson peak. Under applied hydrostatic pressure, $P$, the Boson peak frequency, $omega_{rm b}$, is shifted upwards. We have shown p
We show that a {em vibrational instability} of the spectrum of weakly interacting quasi-local harmonic modes creates the maximum in the inelastic scattering intensity in glasses, the Boson peak. The instability, limited by anharmonicity, causes a com
Experimental results on the density of states and on the acoustic modes of glasses in the THz region are compared to the predictions of two categories of models. A recent one, solely based on an elastic instability, does not account for most observat
The density of vibrational states $g(omega)$ of an amorphous system is studied by using the random-matrix theory. Taking into account the most important correlations between elements of the random matrix of the system, equations for the density of vi
In glasses, atomic disorder combined with atomic connectivity makes understanding of the nature of the vibrations much more complex than in crystals or molecules. With a simple model, however, it is possible to show how disorder generates quasi-local