ﻻ يوجد ملخص باللغة العربية
Using molecular dynamics simulation, we have calculated the pressure dependence of the diffusion constant in a binary Lennard-Jones Glass. We observe four temperature regimes. The apparent activation volume drops from high values in the hot liquid to a plateau value. Near the critical temperature of the mode coupling theory it rises steeply, but in the glassy state we find again small values, similar to the ones in the liquid. The peak of the activation volume at the critical temperature is in agreement with the prediction of mode coupling theory.
The inelastic scattering intensities of glasses and amorphous materials has a maximum at a low frequency, the so called Boson peak. Under applied hydrostatic pressure, $P$, the Boson peak frequency, $omega_{rm b}$, is shifted upwards. We have shown p
Recent numerical studies on glassy systems provide evidences for a population of non-Goldstone modes (NGMs) in the low-frequency spectrum of the vibrational density of states $D(omega)$. Similarly to Goldstone modes (GMs), i. e., phonons in solids, N
In this note we revisit the Kovacs effect, concerning the way in which the volume of a glass-forming liquid, which has been driven out of equilibrium, changes with time while the system evolves towards a metastable state. The theoret- ical explanatio
Atomic correlations in a simple liquid in steady-state flow under shear stress were studied by molecular dynamics simulation. The local atomic level strain was determined through the anisotropic pair-density function (PDF). The atomic level strain ha
We present a detailed investigation of the wave vector dependence of collective atomic motion in Au49Cu26.9Si16.3Ag5.5Pd2.3 and Pd42.5Cu27Ni9.5P21 supercooled liquids close to the glass transition temperature. Using x-ray photon correlation spectrosc