ﻻ يوجد ملخص باللغة العربية
We propose a new physically-based ``multifractal stress activation model of earthquake interaction and triggering based on two simple ingredients: (i) a seismic rupture results from activated processes giving an exponential dependence on the local stress; (ii) the stress relaxation has a long memory. The combination of these two effects predicts in a rather general way that seismic decay rates after mainshocks follow the Omori law 1/t^p with exponents p linearly increasing with the magnitude M of the mainshock and the inverse temperature. We carefully test the prediction on the magnitude dependence of p by a detailed analysis of earthquake sequences in the Southern California Earthquake catalog. We find power law relaxations of seismic sequences triggered by mainshocks with exponents p increasing with the mainshock magnitude by approximately 0.1-0.15 for each magnitude unit increase, from p(M=3) approx 0.6 to p(M=7) approx 1.1, in good agreement with the prediction of the multifractal model. The results are robust with respect to different time intervals, magnitude ranges and declustering methods. When applied to synthetic catalogs generated by the ETAS (Epidemic-Type Aftershock Sequence) model constituting a strong null hypothesis with built-in magnitude-independent $p$-values, our procedure recovers the correct magnitude-independent p-values. Our analysis thus suggests that a new important fact of seismicity has been unearthed. We discuss alternative interpretations of the data and describe other predictions of the model.
A theoretical account is given of the microscopic basis of the rate- and state-dependent friction (RSF) law. The RSF law describes rock friction quantitatively and therefore it is commonly used to model earthquakes and the related phenomena. But the
The correlation length $xi$, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to
The unoccupied states of complex materials are difficult to measure, yet play a key role in determining their properties. We propose a technique that can measure the unoccupied states, called time-resolved Compton scattering, which measures the time-
We present x-ray reflectivity and diffuse scattering measurements from the liquid surface of pure potassium. They strongly suggest the existence of atomic layering at the free surface of a pure liquid metal with low surface tension. Prior to this stu
We extend Kubos Linear Response Theory (LRT) to periodic input signals with arbitrary shapes and obtain exact analytical formulas for the energy dissipated by the system for a variety of signals. These include the square and sawtooth waves, or pulsed