ﻻ يوجد ملخص باللغة العربية
We extend Kubos Linear Response Theory (LRT) to periodic input signals with arbitrary shapes and obtain exact analytical formulas for the energy dissipated by the system for a variety of signals. These include the square and sawtooth waves, or pulsed signals such as the rectangular, sine and $delta$-pulses. It is shown that for a given input energy, the dissipation may be substantially augmented by exploiting different signal shapes. We also apply our results in the context of magnetic hyperthermia, where small magnetic particles are used as local heating centers in oncological treatments.
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant
Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account th
We consider thermodynamically consistent autonomous Markov jump processes displaying a macroscopic limit in which the logarithm of the probability distribution is proportional to a scale-independent rate function (i.e., a large deviations principle i
We analyse the linear response properties of the uniformly heated granular gas. The intensity of the stochastic driving fixes the value of the granular temperature in the non-equilibrium steady state reached by the system. Here, we investigate two sp
Basing on the theory of Feynmans influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open sy