ﻻ يوجد ملخص باللغة العربية
A systematic theory of product and diagonal states is developed for tensor products of $mathbb Z_2$-graded $*$-algebras, as well as $mathbb Z_2$-graded $C^*$-algebras. As a preliminary step to achieve this goal, we provide the construction of a {it fermionic $C^*$-tensor product} of $mathbb Z_2$-graded $C^*$-algebras. Twisted duals of positive linear maps between von Neumann algebras are then studied, and applied to solve a positivity problem on the infinite Fermi lattice. Lastly, these results are used to define fermionic detailed balance (which includes the definition for the usual tensor product as a particular case) in general $C^*$-systems with gradation of type $mathbb Z_2$, by viewing such a system as part of a compound system and making use of a diagonal state.
We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fa
We construct a new class of finite-dimensional C^*-quantum groupoids at roots of unity q=e^{ipi/ell}, with limit the discrete dual of the classical SU(N) for large orders. The representation category of our groupoid turns out to be tensor equivalent
Recently, we have constructed a non{linear (polynomial) extension of the 1-mode Heisenberg group and the corresponding Fock and Weyl representations. The transition from the 1-mode case to the current algebra level, in which the operators are indexed
We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing re
A Banach involutive algebra is called a Krein C*-algebra if there is a fundamental symmetry (an involutive automorphism of period 2) such that the C*-property is satisfied when the original involution is replaced with the new one obtained by composin