ﻻ يوجد ملخص باللغة العربية
We compute the phase diagram of salt-free polyelectrolyte solutions using a modified Debye-Huckel Approach. We introduce the chain connectivity via the Random Phase Approximation with two important modifications. We modify the electrostatic potential at short distances to include a bound on the electrostatic attractions at the distance of closest approach between charges. This modification is shown to act as a hard core in the phase diagram of electrolyte solutions. We also introduce a cut-off on the integration of the modes of wave length smaller than the size over which the chains are strongly perturbed by the electrostatic interactions. This cut-off is shown to be essential to predict physical phase diagram in long chain solutions.
We investigate a system of dense polyelectrolytes in solution. The Langevin dynamics of the system with linearized hydrodynamics is formulated in the functional integral formalism and a transformation made to collective coordinates. Within a dynamica
The many-body theory of interacting electrons poses an intrinsically difficult problem that requires simplifying assumptions. For the determination of electronic screening properties of the Coulomb interaction, the Random Phase Approximation (RPA) pr
The ground state of a many body Hamiltonian considered in the quasiparticle representation is redefined by accounting for the quasiparticle quadrupole pairing interaction. The residual interaction of the newly defined quasiparticles is treated by the
In this study we use non-equilibrium thermodynamics to systematically derive a phase-field model of a polyelectrolyte gel coupled to a hydrodynamic model for a salt solution surrounding the gel. The governing equations for the gel account for the fre
By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from