ﻻ يوجد ملخص باللغة العربية
By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
As a function of energy E, the average strength function S(E) of a doorway state is commonly assumed to be Lorentzian in shape and characterized by two parameters, the peak energy E_0 and the spreading width Gamma. The simple picture is modified when
A characteristic feature of collective and particle-hole excitations in neutron-rich nuclei is that many of them couple to unbound neutron in continuum single-particle orbits. The continuum random phase approximation (cRPA) is a powerful many-body me
The self-consistent random phase approximation (RPA) based on a correlated realistic nucleon-nucleon interaction is used to evaluate correlation energies in closed-shell nuclei beyond the Hartree-Fock level. The relevance of contributions associated
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture da
The Quasiparticle Random Phase Approximation (QRPA) is used in evaluation of the total muon capture ratesfor the final nuclei participating in double-beta decay. Several variants of the method are used, depending on the size of the single particle mo