ﻻ يوجد ملخص باللغة العربية
The many-body theory of interacting electrons poses an intrinsically difficult problem that requires simplifying assumptions. For the determination of electronic screening properties of the Coulomb interaction, the Random Phase Approximation (RPA) provides such a simplification. Here, we explicitly show that this approximation is justified for band structures with sizeable band gaps. This is when the electronic states responsible for the screening are energetically far away from the Fermi level, which is equivalent to a short electronic propagation length of these states. The RPA contains exactly those diagrams in which the classical Coulomb interaction covers all distances, whereas neglected vertex corrections involve quantum tunneling through the barrier formed by the band gap. Our analysis of electron-electron interactions provides a real-space analogy to Migdals theorem on the smallness of vertex corrections in electron-phonon problems. An important application is the increasing use of constrained Random Phase Approximation (cRPA) calculations of effective interactions. We find that their usage of Kohn-Sham energies already accounts for the leading local (excitonic) vertex correction in insulators.
In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge and orbital fluctuations within a random ph
Recent experiments on twisted bilayer graphene show the urgent need for establishing a low-energy lattice model for the system. We use the constrained random phase approximation to study the interaction parameters of such models taking into account s
The effective interaction of downfolded low-energy models for electrons in solids can be obtained by integrating out the high energy bands away from the target band near the Fermi level. Here, we apply the constrained random-phase approximation (cRPA
We describe a finite-field approach to compute density response functions, which allows for efficient $G_0W_0$ and $G_0W_0Gamma_0$ calculations beyond the random phase approximation. The method is easily applicable to density functional calculations
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation (