ﻻ يوجد ملخص باللغة العربية
Experiments in heavy-fermion metals and related theoretical work suggest that critical local-moment fluctuations can play an important role near a zero-temperature phase transition. We study such fluctuations at the quantum critical point of a Kondo impurity model in which the density of band states vanishes as |E|^r at the Fermi energy (E = 0). The local spin response is described by a set of critical exponents that vary continuously with r. For 0 < r < 1, the dynamical susceptibility exhibits omega/T scaling with a fractional exponent, implying that the critical point is interacting.
The variant of the single-impurity Kondo problem in which the conduction-band density of states has a power-law pseudogap at the Fermi energy is known to exhibit a zero-temperature phase transition at a finite exchange coupling. The critical properti
The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to
Recent studies of the global phase diagram of quantum-critical heavy-fermion metals prompt consideration of the interplay between the Kondo interactions and quantum fluctuations of the local moments alone. Toward this goal, we study a Bose-Fermi Kond
The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi l
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension cor