ﻻ يوجد ملخص باللغة العربية
The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid and local moment phases, via the local moment approach. Both phases are shown to be characterized by a low-energy scale that vanishes at the QCP; and the universal scaling spectra, on all energy scales, are obtained analytically. The spectrum precisely at the QCP is also obtained; its form showing clearly the non-Fermi liquid, interacting nature of the fixed point.
The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to
The quantum criticality of the two-lead two-channel pseudogap Anderson model is studied. Based on the non-crossing approximation, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a pow
We investigate the critical behaviour of the spectral weight of a single quasiparticle, one of the key observables in experiment, for the particular case of the transverse Ising model.Series expansions are calculated for the linear chain and the squa
We report the divergence of the nonlinear component of the bulk susceptibility in NaxCoO2 (0.3<x<0.62) as T goes to 0 K. These experiments provide an striking evidence of the existence of a ferromagnetic phase transition at zero Kelvin (quantum phase
The quantum critical behavior of the 2+1 dimensional Gross--Neveu model in the vicinity of its zero temperature critical point is considered. The model is known to be renormalisable in the large $N$ limit, which offers the possibility to obtain expre