ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum critical behavior in the Kondo problem with a pseudogap

222   0   0.0 ( 0 )
 نشر من قبل Kevin Ingersent
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kevin Ingersent




اسأل ChatGPT حول البحث

The variant of the single-impurity Kondo problem in which the conduction-band density of states has a power-law pseudogap at the Fermi energy is known to exhibit a zero-temperature phase transition at a finite exchange coupling. The critical properties of this transition are studied both for N=2 and for N>>1, where N is the spin degeneracy. The critical exponents are consistent with a simple scaling form for the free energy. For any finite N, the temperature exponent of the local spin susceptibility at the critical Kondo coupling varies continuously with the power of the pseudogap. This raises the possibility that a single-particle pseudogap is responsible for the anomalous behavior of certain heavy-fermion metals close to a magnetic quantum phase transition.



قيم البحث

اقرأ أيضاً

142 - Kevin Ingersent , Qimiao Si 2001
Experiments in heavy-fermion metals and related theoretical work suggest that critical local-moment fluctuations can play an important role near a zero-temperature phase transition. We study such fluctuations at the quantum critical point of a Kondo impurity model in which the density of band states vanishes as |E|^r at the Fermi energy (E = 0). The local spin response is described by a set of critical exponents that vary continuously with r. For 0 < r < 1, the dynamical susceptibility exhibits omega/T scaling with a fractional exponent, implying that the critical point is interacting.
Recent studies of the global phase diagram of quantum-critical heavy-fermion metals prompt consideration of the interplay between the Kondo interactions and quantum fluctuations of the local moments alone. Toward this goal, we study a Bose-Fermi Kond o model (BFKM) with Ising anisotropy in the presence of a local transverse field that generates quantum fluctuations in the local-moment sector. We apply the numerical renormalization-group method to the case of a sub-Ohmic bosonic bath exponent and a constant conduction-electron density of states. Starting in the Kondo phase at zero transverse-field, there is a smooth crossover with increasing transverse field from a fully screened to a fully polarized impurity spin. By contrast, if the system starts in its localized phase, then increasing the transverse field causes a continuous, Kondo-destruction transition into the partially polarized Kondo phase. The critical exponents at this quantum phase transition exhibit hyperscaling and take essentially the same values as those of the BFKM in zero transverse field. The many-body spectrum at criticality varies continuously with the bare transverse field, indicating a line of critical points. We discuss implications of these results for the global phase diagram of the Kondo lattice model.
We theoretically investigate the non-equilibrium quantum phase transition in a generic setup: the pseudogap Kondo model where a quantum dot couples to two-left (L) and right (R)-voltage-biased fermionic leads with power-law density of states (DOS) wi th respect to their Fermi levels {mu}_L/R, {rho}_c,L(R) ({omega}) propto |{omega} - {mu}_L(R) |r, and 0 < r < 1. In equilibrium (zero bias voltage) and for 0 < r < 1/2, with increasing Kondo correlations, in the presence of particle-hole symmetry this model exhibits a quantum phase transition from a unscreened local moment (LM) phase to the Kondo phase. Via a controlled frequency-dependent renormalization group (RG) approach, we compute analytically and numerically the non-equilibrium conductance, conduction electron T-matrix and local spin susceptibility at finite bias voltages near criticality. The current-induced decoherence shows distinct nonequilibrium scaling, leading to new universal non-equilibrium quantum critical behaviors in the above observables. Relevance of our results for the experiments is discussed.
In solids containing elements with f orbitals, the interaction between f-electron spins and those of itinerant electrons leads to the development of low-energy fermionic excitations with a heavy effective mass. These excitations are fundamental to th e appearance of unconventional superconductivity and non-Fermi-liquid behaviour observed in actinide- and lanthanide-based compounds. Here we use spectroscopic mapping with the scanning tunnelling microscope to detect the emergence of heavy excitations with lowering of temperature in a prototypical family of cerium-based heavy-fermion compounds. We demonstrate the sensitivity of the tunnelling process to the composite nature of these heavy quasiparticles, which arises from quantum entanglement of itinerant conduction and f electrons. Scattering and interference of the composite quasiparticles is used to resolve their energy-momentum structure and to extract their mass enhancement, which develops with decreasing temperature. The lifetime of the emergent heavy quasiparticles reveals signatures of enhanced scattering and their spectral lineshape shows evidence of energy-temperature scaling. These findings demonstrate that proximity to a quantum critical point results in critical damping of the emergent heavy excitation of our Kondo lattice system.
The heavy-fermion metal YbRh$_{2}$Si$_{2}$ is a weak antiferromagnet below $T_{N} = 0.07$ K. Application of a low magnetic field $B_{c} = 0.06$ T ($perp c$) is sufficient to continuously suppress the antiferromagnetic (AF) order. Below $T approx 10$ K, the Sommerfeld coefficient of the electronic specific heat $gamma(T)$ exhibits a logarithmic divergence. At $T < 0.3$ K, $gamma(T) sim T^{-epsilon}$ ($epsilon: 0.3 - 0.4$), while the electrical resistivity $rho(T) = rho_{0} + aT$ ($rho_{0}$: residual resistivity). Upon extrapolating finite-$T$ data of transport and thermodynamic quantities to $T = 0$, one observes (i) a vanishing of the Fermi surface crossover scale $T^{*}(B)$, (ii) an abrupt jump of the initial Hall coefficient $R_{H}(B)$ and (iii) a violation of the Wiedemann Franz law at $B = B_{c}$, the field-induced quantum critical point (QCP). These observations are interpreted as evidence of a critical destruction of the heavy quasiparticles, i.e., propagating Kondo singlets, at the QCP of this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا