ﻻ يوجد ملخص باللغة العربية
This course presents some applications of gravitational lensing to the measurement of masses of galaxies (galaxy-galaxy lensing, Eintein rings, perturbations of giant arcs) and cluster of galaxies (strong and weak lensing). This complements the F. Bernardeaus course dedicated to some theoretical aspects and weak lensing by large scale structures. In the first section, I describe the most important lensing quantities and lensing properties useful for astrophycal applications. Then I briefly present some academic exemples. Section three is devoted to exemples of mass reconstruction and the study of mass distribution in clusters of galaxies and galaxies.
We investigate the feasibility of measuring weak gravitational lensing using 21cm intensity mapping with special emphasis on the performance of the planned Square Kilometre Array (SKA). We find that the current design for SKA-Mid should be able to me
The case for a flat Cold Dark Matter model with a positive cosmological constant $Lambda$ has been recently strongly advocated by some theoreticians. In this paper we give the observers point of view to the light of the most recent observations with
In this article, we develop a formalism which is different from the standard lensing scenario and is necessary for understanding lensing by gravitational fields which arise as solutions of the effective Einstein equations on the brane. We obtain gene
Strong gravitational lensing along with the distance sum rule method can constrain both cosmological parameters as well as density profiles of galaxies without assuming any fiducial cosmological model. To constrain galaxy parameters and cosmic curvat
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $Lambda$CDM cosmology with a prior on $H_0$ that encompasses the most r