ﻻ يوجد ملخص باللغة العربية
We investigate the feasibility of measuring weak gravitational lensing using 21cm intensity mapping with special emphasis on the performance of the planned Square Kilometre Array (SKA). We find that the current design for SKA-Mid should be able to measure the evolution of the lensing power spectrum at z~2-3 using this technique. This will be a probe of the expansion history of the universe and gravity at a unique range in redshift. The signal-to-noise is found to be highly dependent on evolution of the neutral hydrogen fraction in the universe with a higher HI density resulting in stronger signal. With realistic models for this, SKA Phase 1 should be capable of measuring the lensing power spectrum and its evolution. The signal-to-noises dependence on the area and diameter of the telescope array is quantified. We further demonstrate the applications of this technique by applying it to two specific coupled dark energy models that would be difficult to observationally distinguish without information from this range of redshift. We also investigate measuring the lensing signal with 21cm emission from the Epoch of Reionization (EoR) using SKA-Low and find that it is unlikely to constrain cosmological parameters because of the small survey size, but could provide a map of the dark matter within a small region of the sky.
This course presents some applications of gravitational lensing to the measurement of masses of galaxies (galaxy-galaxy lensing, Eintein rings, perturbations of giant arcs) and cluster of galaxies (strong and weak lensing). This complements the F. Be
Strong gravitational lensing along with the distance sum rule method can constrain both cosmological parameters as well as density profiles of galaxies without assuming any fiducial cosmological model. To constrain galaxy parameters and cosmic curvat
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $Lambda$CDM cosmology with a prior on $H_0$ that encompasses the most r
Intensity maps of the 21cm emission line of neutral hydrogen are lensed by intervening large-scale structure, similar to the lensing of the cosmic microwave background temperature map. We extend previous work by calculating the lensing contribution t
We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 square degrees in five optical bands. Using accurate photometric redsh