ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphology of the Nuclear Disk in M87

65   0   0.0 ( 0 )
 نشر من قبل Zlatan Tsvetanov
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z.I. Tsvetanov




اسأل ChatGPT حول البحث

A deep, fuly sampled diffraction limited (FWHM ~ 70 mas) narrow-band image of the central region in M87 was obtained with the Wide Filed and Planetary Camera 2 of the Hubble Space Telescope using the dithering technique. The H-alpha+[NII] continuum subtracted image reveals a wealth of details in the gaseous disk structure described earlier by Ford et al. (1994). The disk morphology is dominated by a well defined three-arm spiral pattern. In addition, the major spiral arms contain a large number of small arclets covering a range of sizes (0.1-0.3 arcsec = 10-30 pc). The overall surface brightness profile inside a radius ~1.5 (100 pc) is well represented by a power-law I(mu) ~ mu^(-1.75), but when the central ~40 pc are excluded it can be equally well fit by an exponential disk. The major axis position angle remains constant at about PA_disk ~ 6 deg for the innermost ~1, implying the disk is oriented nearly perpendicular to the synchrotron jet (PA_jet ~ 291 deg). At larger radial distances the isophotes twist, reflecting the gas distribution in the filaments connecting to the disk outskirts. The ellipticity within the same radial range is e = 0.2-0.4, which implies an inclination angle of i~35 deg. The sense of rotation combined with the dust obscuration pattern indicate that the spiral arms are trailing.



قيم البحث

اقرأ أيضاً

The nuclear spectrum of M87 covering the Ly_a-H_a wavelength range was obtained with the HST Faint Object Spectrograph (FOS) trough a 0.21 arcsec aperture. Contrary to some previous claims, a single power law (F(nu)~nu^(-a)) can not reproduce the obs erved continuum shape and at least a broken power law is require for a good fit (a = 1.75 and 1.41 shortward and longward of the break at ~4500 A). We detect a set of broad (FWHM ~ 400 km/s) absorption lines arising in the gas associated with M87. These are only lines from neutral and very low ionization species blueshifted by ~150 km/s relative to the M87 systemic velocity, indicating a net gas outflow and turbulence. The excitation sensitive emission line ratios suggest that shocks may be the dominant energy supplier. The nuclear source in M87 is significantly variable. From the FOS target acquisition data, we have established that the flux from the optical nucleus varies by a factor ~2 on time scales of ~2.5 months and by as much as 25% over 3 weeks, and remains unchanged (<2.5%) on time scales of ~1 day. These timescales limit the physical size of the emitting region to a few hundred gravitational radii. The variability, combined with other observed spectral properties, strongly suggest that M87 is intrinsically of BL Lac type but is viewed at an angle too large to reveal the classical BL Lac properties.
The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observa tions are required to investigate the persistence of the primary image feature - a ring with azimuthal brightness asymmetry - and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of ~40 uas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin.
By combining surface brightness profiles from images taken in the HST/NICMOS F160W and ground-based (GB) $K$ bands, we have obtained NIR profiles for a well studied sample of inclined disk galaxies, spanning radial ranges from 20 pc to a few kpc. We fit PSF-convolved Sersic-plus-exponential laws to the profiles, and compare the results with the fits to the ground-based data alone. HST profiles show light excesses over the best-fit Sersic law in the inner ~1 arcsec. This is often as a result of inner power-law cusps similar to the inner profiles of intermediate-luminosity elliptical galaxies.
239 - E. Chiang 2009
Following the optical imaging of the exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhauts debris disk is gravitationally shaped by an interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass < 3 Jupiter masses. If the belt and planet orbits are apsidally aligned, our model predicts a planet mass of 0.5 Jupiter masses. The inner edge of the debris disk at 133 AU lies at the periphery of Fom bs chaotic zone, and the mean disk eccentricity of 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planets chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of 100 Myr, and model them separately from their dust grain progeny; the latters orbits are strongly affected by radiation pressure and their lifetimes are limited to 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fom bs nominal space velocity does not bear this out, but the astrometric uncertainties may be large. If the apsidal misalignment is real, our upper mass limit of 3 Jupiter masses still holds. The belt contains at least 3 Earth masses of solids that are grinding down to dust. Such a large mass in solids is consistent with Fom b having formed in situ.
404 - N. Matsunaga 2014
Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period-luminosity and period-age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic Center, three of which were reported in 2011, the other reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the Nuclear Stellar Disk, a group of stars and interstellar matter occupying a region of 200 pc around the Center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the Nuclear Stellar Disk like younger stars and stellar clusters therein.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا