ﻻ يوجد ملخص باللغة العربية
The nuclear spectrum of M87 covering the Ly_a-H_a wavelength range was obtained with the HST Faint Object Spectrograph (FOS) trough a 0.21 arcsec aperture. Contrary to some previous claims, a single power law (F(nu)~nu^(-a)) can not reproduce the observed continuum shape and at least a broken power law is require for a good fit (a = 1.75 and 1.41 shortward and longward of the break at ~4500 A). We detect a set of broad (FWHM ~ 400 km/s) absorption lines arising in the gas associated with M87. These are only lines from neutral and very low ionization species blueshifted by ~150 km/s relative to the M87 systemic velocity, indicating a net gas outflow and turbulence. The excitation sensitive emission line ratios suggest that shocks may be the dominant energy supplier. The nuclear source in M87 is significantly variable. From the FOS target acquisition data, we have established that the flux from the optical nucleus varies by a factor ~2 on time scales of ~2.5 months and by as much as 25% over 3 weeks, and remains unchanged (<2.5%) on time scales of ~1 day. These timescales limit the physical size of the emitting region to a few hundred gravitational radii. The variability, combined with other observed spectral properties, strongly suggest that M87 is intrinsically of BL Lac type but is viewed at an angle too large to reveal the classical BL Lac properties.
A deep, fuly sampled diffraction limited (FWHM ~ 70 mas) narrow-band image of the central region in M87 was obtained with the Wide Filed and Planetary Camera 2 of the Hubble Space Telescope using the dithering technique. The H-alpha+[NII] continuum s
We study the centimeter- to millimeter-wavelength synchrotron spectrum of the core of the radio galaxy M87 at $lesssim0.8,{rm mas}~sim110R_{s}$ spatial scales using four years of fully simultaneous, multi-frequency VLBI data obtained by the Korean VL
The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet
We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87 in the mid-infrared from 5-35 um. These observations allow us to investigate mid-IR emission mechanisms in the core of M87 and to establish that the flaring, variable jet c
We revisit the XMM-Newton observation of M87 focusing our attention on the temperature structure. We find that spectra for most regions of M87 can be adequately fit by single temperature models. Only in a few regions, which are cospatial with the E a