ﻻ يوجد ملخص باللغة العربية
Following the optical imaging of the exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhauts debris disk is gravitationally shaped by an interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass < 3 Jupiter masses. If the belt and planet orbits are apsidally aligned, our model predicts a planet mass of 0.5 Jupiter masses. The inner edge of the debris disk at 133 AU lies at the periphery of Fom bs chaotic zone, and the mean disk eccentricity of 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planets chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of 100 Myr, and model them separately from their dust grain progeny; the latters orbits are strongly affected by radiation pressure and their lifetimes are limited to 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fom bs nominal space velocity does not bear this out, but the astrometric uncertainties may be large. If the apsidal misalignment is real, our upper mass limit of 3 Jupiter masses still holds. The belt contains at least 3 Earth masses of solids that are grinding down to dust. Such a large mass in solids is consistent with Fom b having formed in situ.
We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 $mu$Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform
Vega and Fomalhaut, are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred as debris disk twins. We present Spitzer 10-35 um spectroscopic data centered at both stars, and identify warm, unresolved e
[Abridged] Debris disks are extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU as well as evidence of a warm dust component, which is suspected of being a bright analog to the solar syst
We present the first spatially resolved mid-infrared (37.1 $mu$m) image of the Fomalhaut debris disk. We use PSF fitting and subtraction to distinctly measure the flux from the unresolved component and the debris disk. We measure an infrared excess i
Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by p