ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mid-Infrared Emission of M87

102   0   0.0 ( 0 )
 نشر من قبل Eric S. Perlman
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. S. Perlman




اسأل ChatGPT حول البحث

We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87 in the mid-infrared from 5-35 um. These observations allow us to investigate mid-IR emission mechanisms in the core of M87 and to establish that the flaring, variable jet component HST-1 is not a major contributor to the mid-IR flux. The Spitzer data include a high signal-to-noise 15-35 $mu$m spectrum of the knot A/B complex in the jet, which is consistent with synchrotron emission. However, a synchrotron model cannot account for the observed {it nuclear} spectrum, even when contributions from the jet, necessary due to the degrading of resolution with wavelength, are included. The Spitzer data show a clear excess in the spectrum of the nucleus at wavelengths longer than 25 um, which we model as thermal emission from cool dust at a characteristic temperature of 55 pm 10 K, with an IR luminosity sim 10^{39} {rm ~erg ~s^{-1}}. Given Spitzers few-arcsecond angular resolution, the dust seen in the nuclear spectrum could be located anywhere within ~5 (390 pc) of the nucleus. In any case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does not contain the IR-bright torus that classical unified AGN schemes invoke. However, this result is consistent with theoretical predictions for low-luminosity AGNs



قيم البحث

اقرأ أيضاً

Interplanetary dust (IPD) is thought to be recently supplied from asteroids and comets. Grain properties of the IPD can give us the information about the environment in the proto-solar system, and can be traced from the shapes of silicate features ar ound 10 $mu$m seen in the zodiacal emission spectra. We analyzed mid-IR slit-spectroscopic data of the zodiacal emission in various sky directions obtained with the Infrared Camera on board AKARI satellite. After we subtracted the contamination due to instrumental artifacts, we have successfully obtained high S/N spectra and have determined detailed shapes of excess emission features in the 9 -- 12 $mu$m range in all the sky directions. According to a comparison between the feature shapes averaged over all directions and the absorption coefficients of candidate minerals, the IPD was found to typically include small silicate crystals, especially enstatite grains. We also found the variations in the feature shapes and the related grain properties among the different sky directions. From investigations of the correlation between feature shapes and the brightness contributions from dust bands, the IPD in dust bands seems to have the size frequency distribution biased toward large grains and show the indication of hydrated minerals. The spectra at higher ecliptic latitude showed a stronger excess, which indicates an increase in the fraction of small grains included in the line of sight at higher ecliptic latitudes. If we focus on the dependence of detailed feature shapes on ecliptic latitudes, the IPD at higher latitudes was found to have a lower olivine/pyroxene ratio for small amorphous grains. The variation of the mineral composition of the IPD in different sky directions may imply different properties of the IPD from different types of parent bodies, because the spatial distribution of the IPD depends on the type of the parent body.
We present mid IR spectro-photometric imaging of a sample of eight nearby ($D leq 240$pc) Herbig Ae/Be stars. The spectra are dominated by photospheric emission (HR6000), featureless infrared excess emission (T~Cha), broad silicate emission feature ( HR5999) and the infrared emission bands (HD 97048, HD 97300, TY~CrA, HD 176386). The spectrum of HD179218 shows both silicate emission and infrared emission bands (IEB). All stars of our sample where the spectrum is entirely dominated by IEB have an extended emission on scales of a few thousand AU ($sim 10$). We verify the derived source extension found with ISOCAM by multi--aperture photometry with ISOPHT and compare our ISOCAM spectral photometry with ISOSWS spectra.
Using the star cluster catalogs from the Hubble Space Telescope program Legacy ExtraGalactic UV survey (LEGUS) and 8 $mu$m images from the IRAC camera on the Spitzer Space Telescope for 5 galaxies within 5 Mpc, we investigate how the 8 $mu$m dust lum inosity correlates with the stellar age on the 30--50 pc scale of star forming regions. We construct a sample of 97 regions centered at local peaks of 8 $mu$m emission, each containing one or more young star cluster candidates from the LEGUS catalogs. We find a tight anti-correlation with a Pearson correlation coefficient of $r=-0.84pm0.05$ between the mass-normalized dust-only 8 $mu$m luminosity and the age of stellar clusters younger than 1 Gyr; the 8 $mu$m luminosity decreases with increasing age of the stellar population. Simple assumptions on a combination of stellar and dust emission models reproduce the observed trend. We also explore how the scatter of the observed trend depends on assumptions of stellar metallicity, PAH abundance, fraction of stellar light absorbed by dust, and instantaneous versus continuous star formation models. We find that variations in stellar metallicity have little effect on the scatter, while PAH abundance and the fraction of dust-absorbed light bracket the full range of the data. We also find that the trend is better explained by continuous star formation, rather than instantaneous burst models. We ascribe this result to the presence of multiple star clusters with different ages in many of the regions. Upper limits of the dust-only 8 $mu$m emission as a function of age are provided.
We present high-angular (~0.4) resolution mid-infrared (MIR) polarimetric observations in the 8.7 ${mu}$m and 11.6 ${mu}$m filters of Cygnus A using CanariCam on the 10.4-m Gran Telescopio CANARIAS. A highly polarized nucleus is observed with a degre e of polarization of 11${pm}$3% and 12${pm}$3% and position angle of polarization of 27${pm}$8 degrees and 35${pm}$8 degrees in a 0.38 (~380 pc) aperture for each filter. The observed rising of the polarized flux density with increasing wavelength is consistent with synchrotron radiation from the pc-scale jet close to the core of Cygnus A. Based on our polarization model, the synchrotron emission from the pc-scale jet is estimated to be 14% and 17% of the total flux density in the 8.7 ${mu}$m and 11.6 ${mu}$m filters, respectively. A blackbody component with a characteristic temperature of 220 K accounts for >75% of the observed MIR total flux density. The blackbody emission arises from a combination of (1) dust emission in the torus; and (2) diffuse dust emission around the nuclear region, but the contributions of the two components cannot be well constrained in these observations.
We report 8- to 13-micron spectral observations of Neptune and Uranus from the NASA Infrared Telescope Facility spanning more than a decade. The spectroscopic data indicate a steady increase in Neptunes mean atmospheric 12-micron ethane emission from 1985 to 2003, followed by a slight decrease in 2004. The simplest explanation for the intensity variation is an increase in stratospheric effective temperature from 155 +/- 3 K in 1985 to 176 +/- 3 K in 2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 +/- 3 K in 2004. We also detected variation of the overall spectral structure of the ethane band, specifically an apparent absorption structure in the central portion of the band; this structure arises from coarse spectral sampling coupled with a non-uniform response function within the detector elements. We also report a probable direct detection of ethane emission on Uranus. The deduced peak mole fraction is approximately an order of magnitude higher than previous upper limits for Uranus. The model fit suggests an effective temperature of 114 +/- 3 K for the globally-averaged stratosphere of Uranus, which is consistent with recent measurements indicative of seasonal variation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا