ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass distribution in early-type disk galaxies: declining rotation curves and correlations with optical properties

95   0   0.0 ( 0 )
 نشر من قبل Edo Noordermeer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present rotation curves for 19, mostly luminous, early-type disk galaxies. Rotation velocities are measured from a combination of HI velocity fields and long-slit optical emission line spectra along the major axis. We find that the rotation curves generally rise rapidly in the central regions and often reach rotation velocities of 200 - 300 km/s within a few hundred parsecs of the centre. The detailed shape of the central rotation curves shows a clear dependence on the concentration of the stellar light distribution and the bulge-to-disk luminosity ratio: galaxies with highly concentrated stellar light distributions reach the maximum in their rotation curves at relatively smaller radii than galaxies with small bulges and a relatively diffuse light distribution. We interpret this as a strong indication that the dynamics in the central regions are dominated by the stellar mass. At intermediate radii, many rotation curves decline. The strength of the decline is correlated with the total luminosity of the galaxies, more luminous galaxies having on average more strongly declining rotation curves. At large radii, however, all declining rotation curves flatten out, indicating that substantial amounts of dark matter must be present in these galaxies too. A comparison of our rotation curves with the Universal Rotation Curve from Persic et al. (1996) reveals large discrepancies between the observed and predicted rotation curves; we argue that rotation curves form a multi-parameter family which is too complex to describe with a simple formula depending on total luminosity only. (abridged)



قيم البحث

اقرأ أيضاً

We are studying the mass distribution in a sample of 50 early type spiral galaxies, with morphological type betweens S0 and Sab and absolute magnitudes M_B between -18 and -22; they form the massive and high-surface brightness extreme of the disk gal axy population. Our study is designed to investigate the relation between dark and luminous matter in these systems, of which very little yet is known. From a combination of WSRT HI observations and long-slit optical spectra, we have obtained high-quality rotation curves. The rotation velocities always rise very fast in the center; in the outer regions, they are often declining, with the outermost measured velocity 10-25% lower than the maximum. We decompose the rotation curves into contributions from the luminous (stellar and gaseous) and dark matter. The stellar disks and bulges always dominate the rotation curves within the inner few disk scale lengths, and are responsible for the decline in the outer parts. As an example, we present here the decompositions for UGC 9133. We are able to put tight upper and lower limits on the stellar mass-to-light ratios.
We present deep B- and R-band surface photometry for a sample of 21 galaxies with morphological types between S0 and Sab. We present radial profiles of surface brightness, colour, ellipticity, position angle and deviations of axisymmetry for all gala xies, as well as isophotal and effective radii and total magnitudes. We have decomposed the images into contributions from a spheroidal bulge and a flat disk, using an interactive, 2D decomposition technique. We study in detail the relations between various bulge and disk parameters. In particular, we find that the bulges of our galaxies have surface brightness profiles ranging from exponential to De Vaucouleurs, with the average value of the Sersic shape parameter n being 2.5. In agreement with previous studies, we find that the shape of the bulge intensity distribution depends on luminosity, with the more luminous bulges having more centrally peaked light profiles. By comparing the ellipticity of the isophotes in the bulges to those in the outer, disk dominated regions, we are able to derive the intrinsic axis ratio q_b of the bulges. The average axis ratio is 0.55, with an rms spread of 0.12. None of the bulges in our sample is spherical, whereas in some cases, the bulges can be as flat as q_b = 0.3 - 0.4. The bulge flattening seems to be weakly coupled to luminosity, more luminous bulges being on average slightly more flattened than their lower-luminosity counterparts. Our finding that most bulges are significantly flattened and have an intensity profile shallower than R^{1/4} suggests that `pseudobulges, formed from disk material by secular processes, do not only occur in late-type spiral galaxies, but are a common feature in early-type disk galaxies as well. (abridged)
We extend the MOND analysis to a sample of 17 high surface brightness, early-type disc galaxies with rotation curves derived from a combination of 21cm HI line observations and optical spectroscopic data. A number of these galaxies have asymptotic ro tation velocities between 250 and 350 km/s making them among the most massive systems (in terms of baryonic mass) considered in the context of MOND. We find that the general MOND prediction for such galaxies -- a rotation curve which gradually declines to the asymptotic value -- is confirmed, and in most cases the MOND rotation curve, determined from the mean radial light and gas distribution, agrees in detail with the observed rotation curve. In the few cases where MOND appears not to work well, the discrepancies can generally be understood in terms of various observational errors -- such as incorrect orientation angles and/or distances -- or of unmodelled physical effects -- such as non-circular motions. The implied mass-to-light ratios for the stellar disc and bulge constrain the MOND interpolating function; the form recently suggested by Zhao & Famaey (2005) yields more sensible values than the one traditionally used in MOND determinations of galaxy rotation curves.
103 - Dilip G. Banhatti 2007
After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of appl ying these methods. Recent observations and models of the very inner central parts of galaxian rotation curves are only briefly described. I then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Application of modified Newtonian dynamics to the outer parts of disk galaxies is then described. Finally, attempts to apply Einsteinian general relativity to the dynamics are summarized. The article ends with a summary and prospects for further work in this area.
{Comparison of mass density profiles of galaxies of varying sizes based on some gravity theories from observed galaxy rotation curves and assessing the need for dark matter.} We present an analysis of the rotation curves of five galaxies of varying g alactic radii: NGC6822 (4.8 kpc), Large Magellanic Cloud (9 kpc), The Milky Way (17 kpc), NGC3198 (30 kpc) and UGC9133 (102.5 kpc). The mass and mass density profiles of these galaxies have been computed using the scientific computing s/w package MATLAB taking the already available velocity profiles of the galaxies as the input, and without considering any Dark Matter contribution. We have plotted these profiles after computing them according to three different theories of gravity (and dynamics): Newtonian (black line), Modified Newtonian Dynamics (MoND) (green line) and Vacuum Modified Gravity (red line). We also consider how the profile due to the Newtonian theory would modify if we take into account a small negative value of the Cosmological Constant (5 x 10^-56 cm^-2 from theory) (blue line). Comparing these mass and mass density profiles, we try to form an idea regarding what could be a realistic theory of gravity and whether we need Dark Matter to explain the results. Keywords : disk galaxy rotation curves, galaxy mass, mass density profile, dark matter, Newtonian theory, MoND, Vacuum Modified Gravity, negative cosmological constant
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا