ﻻ يوجد ملخص باللغة العربية
We extend the MOND analysis to a sample of 17 high surface brightness, early-type disc galaxies with rotation curves derived from a combination of 21cm HI line observations and optical spectroscopic data. A number of these galaxies have asymptotic rotation velocities between 250 and 350 km/s making them among the most massive systems (in terms of baryonic mass) considered in the context of MOND. We find that the general MOND prediction for such galaxies -- a rotation curve which gradually declines to the asymptotic value -- is confirmed, and in most cases the MOND rotation curve, determined from the mean radial light and gas distribution, agrees in detail with the observed rotation curve. In the few cases where MOND appears not to work well, the discrepancies can generally be understood in terms of various observational errors -- such as incorrect orientation angles and/or distances -- or of unmodelled physical effects -- such as non-circular motions. The implied mass-to-light ratios for the stellar disc and bulge constrain the MOND interpolating function; the form recently suggested by Zhao & Famaey (2005) yields more sensible values than the one traditionally used in MOND determinations of galaxy rotation curves.
We investigate a sub-sample of the rotation curves consisting of 45 HSB non-bulgy spiral galaxies selected from SPARC (Spitzer Photometry and Accurate Rotation Curves) database by using two dark halo models (NFW and Burkert) and MOdified Newtonian Dy
We present rotation curves derived for a sample of 62 late-type dwarf galaxies that have been observed as part of the Westerbork HI Survey of Spiral and Irregular Galaxies (WHISP) project. The rotation curves were derived by interactively fitting mod
We present rotation curves for 19, mostly luminous, early-type disk galaxies. Rotation velocities are measured from a combination of HI velocity fields and long-slit optical emission line spectra along the major axis. We find that the rotation curves
A small fraction of early-type galaxies (ETGs) show prolate rotation, i.e. they rotate around their long photometric axis. In simulations, certain configurations of galaxy mergers are known to produce this type of rotation. We investigate the associa
We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and