ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk galaxy rotation curves and dark matter distribution

104   0   0.0 ( 0 )
 نشر من قبل Dilip G. Banhatti Dr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dilip G. Banhatti




اسأل ChatGPT حول البحث

After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of applying these methods. Recent observations and models of the very inner central parts of galaxian rotation curves are only briefly described. I then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Application of modified Newtonian dynamics to the outer parts of disk galaxies is then described. Finally, attempts to apply Einsteinian general relativity to the dynamics are summarized. The article ends with a summary and prospects for further work in this area.



قيم البحث

اقرأ أيضاً

EGRET gamma-ray archival data used with GALPROP software show two ringlike structures in Milky Way Plane which roughly tally with distribution of stars ([1] & references therein). To understand fully the implications of this and similar results on de tailed structure and rotation curve of especially Milky Way Disk as well as rotation curves of other galaxies as derived from spatially resolved spectroscopic data-cubes, a re-examination of the basis of the connection between mass density and rotation curve is warranted. Kenneth F. Nicholsons approach [2], which uses only Newtonian dynamics & gravity, is presented.
We use the galaxy rotation curves in the SPARC database to compare 9 different dark matter and modified gravity models on an equal footing, paying special attention to the stellar mass-to-light ratios. We compare three non-interacting dark matter mod els, a self interacting DM (SIDM) model, two hadronically interacting DM (HIDM) models, and three modified Newtonian dynamics type models: MOND, Radial Acceleration Relation (RAR) and a maximal-disk model. The models with DM-gas interactions generate a disky component in the dark matter, which significantly improves the fits to the rotation curves compared to all other models except an Einasto halo; the MOND-type models give significantly worse fits.
85 - E. Hayashi 2004
We use N-body hydrodynamical simulations to study the structure of disks in triaxial potentials resembling CDM halos. Our analysis focuses on the accuracy of the dark mass distribution inferred from rotation curves derived from simulated long-slit sp ectra. We consider a massless disk embedded in a halo with axis ratios of 0.5:0.6:1.0 and with its rotation axis aligned with the minor axis of the halo. Closed orbits for the gaseous particles deviate from coplanar circular symmetry, resulting in a variety of long-slit rotation curve shapes, depending on the orientation of the disk relative to the line of sight. Rotation curves may thus differ significantly from the spherically-averaged circular velocity profile of the dark matter halo. Solid-body rotation curves--typically interpreted as a signature of a constant density core in the dark matter distribution--are obtained about 25% of the time for random orientations although the dark matter follows the cuspy density profile proposed by Navarro, Frenk & White (NFW). We conclude that the discrepancies reported between the shape of the rotation curve of low surface brightness galaxies and the structure of CDM halos may be resolved once the complex effects of halo triaxiality on the dynamics of the gas component is properly taken into account.
301 - J. J. Dalcanton , A. Stilp 2010
Rotation curves constrain a galaxys underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emis sion lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds <75km/s, but are unlikely to be significant in higher mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in galaxies. Thus, while pressure support may alleviate possible tensions between rotation curve observations and LambdaCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.
Dark matter-baryon scaling relations in galaxies are important in order to constrain galaxy formation models. Here, we provide a modern quantitative assessment of those relations, by modelling the rotation curves of galaxies from the Spitzer Photomet ry and Accurate Rotation Curves (SPARC) database with the Einasto dark halo model. We focus in particular on the comparison between the original SPARC parameters, with constant mass-to-light ratios for bulges and disks, and the parameters for which galaxies follow the tightest radial acceleration relation. We show that fits are improved in the second case, and that the pure halo scaling relations also become tighter. We report that the density at the radius where the slope is -2 is strongly anticorrelated to this radius, and to the Einasto index. The latter is close to unity for a large number of galaxies, indicative of large cores. In terms of dark matter-baryon scalings, we focus on relations between the core properties and the extent of the baryonic component, which are relevant to the cusp-core transformation process. We report a positive correlation between the core size of halos with small Einasto index and the stellar disk scale-length, as well as between the averaged dark matter density within 2 kpc and the baryon-induced rotational velocity at that radius. This finding is related to the consequence of the radial acceleration relation on the diversity of rotation curve shapes, quantified by the rotational velocity at 2 kpc. While a tight radial acceleration relation slightly decreases the observed diversity compared to the original SPARC parameters, the diversity of baryon-induced accelerations at 2 kpc is sufficient to induce a large diversity, incompatible with current hydrodynamical simulations of galaxy formation, while maintaining a tight radial acceleration relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا