ﻻ يوجد ملخص باللغة العربية
Recent observations of the polarisation of the optical pulses from the Crab pulsar motivated detailed comparative studies of the emission predicted by the polar cap, the outer gap and the two-pole caustics models. In this work, we study the polarisation properties of the synchrotron emission emanating from the striped wind model. We use an explicit asymptotic solution for the large-scale field structure related to the oblique split monopole and valid for the case of an ultra-relativistic plasma. This is combined with a crude model for the emissivity of the striped wind and of the magnetic field within the dissipating stripes themselves. We calculate the polarisation properties of the high-energy pulsed emission and compare our results with optical observations of the Crab pulsar. The resulting radiation is linearly polarised. In the off-pulse region, the electric vector lies in the direction of the projection on the sky of the rotation axis of the pulsar, in good agreement with the data. Other properties such as a reduced degree of polarisation and a characteristic sweep of the polarisation angle within the pulses are also reproduced.
It is generally thought that most of the spin-down power of a pulsar is carried away in an MHD wind dominated by Poynting flux. In the case of an oblique rotator, a significant part of this energy can be considered to be in a low-frequency wave, cons
Pulsar wind nebulae (PWNe) are main gamma-ray emitters in the Galactic plane. Although the leptonic scenario is able to explain most PWNe emission well, a hadronic contribution cannot be excluded. High-energy emission raises the possibility that gamm
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a m
The vast majority of the pulsars detected by the Fermi Large Area Telescope (LAT) display spectra with exponential cutoffs falling in a narrow range around a few GeV. Early spectral modelling predicted spectral cutoff energies of up to 100 GeV. More
The detection of bright X-ray features and large TeV halos around old pulsars that have escaped their parent Supernova Remnants and are interacting directly with the ISM, suggest that high energy particles, more likely high energy pairs, can escape f