ﻻ يوجد ملخص باللغة العربية
Pulsar wind nebulae (PWNe) are main gamma-ray emitters in the Galactic plane. Although the leptonic scenario is able to explain most PWNe emission well, a hadronic contribution cannot be excluded. High-energy emission raises the possibility that gamma-rays are hadronically produced which inevitably leads to the production of neutrinos. We report a stacking analysis to search for neutrino emission from 35 PWNe that are very-high-energy gamma-ray emitters and the results using 9.5 years of all-sky IceCube data. In the absence of any significant correlation, we set upper limits on the total neutrino emission from those PWNe and constraints on the hadronic component.
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a m
The detection of bright X-ray features and large TeV halos around old pulsars that have escaped their parent Supernova Remnants and are interacting directly with the ISM, suggest that high energy particles, more likely high energy pairs, can escape f
The recently detected gamma-ray emission from Starburst galaxies is most commonly considered to be diffuse emission arising from strong interactions of accelerated cosmic rays. Mannheim et al. (2012), however, have argued that a population of individ
X-ray binaries are long-standing source candidates of Galactic cosmic rays and neutrinos. The compact object in a binary system can be the site for cosmic-ray acceleration, while high-energy neutrinos can be produced by the interactions of cosmic ray
We report on a sensitive survey for radio pulsar wind nebulae (PWN) towards 27 energetic and/or high velocity pulsars. Observations were carried out at 1.4 GHz using the Very Large Array and the Australia Telescope Compact Array, and utilised pulsar-