ﻻ يوجد ملخص باللغة العربية
The vast majority of the pulsars detected by the Fermi Large Area Telescope (LAT) display spectra with exponential cutoffs falling in a narrow range around a few GeV. Early spectral modelling predicted spectral cutoff energies of up to 100 GeV. More modern studies estimated spectral cutoff energies in the 1-20 GeV range. It was therefore not expected that pulsars would be visible in the very-high-energy (VHE; >100 GeV) regime. The VERITAS detection (confirmed by MAGIC) of pulsed emission from the Crab pulsar up to 400 GeV (and now possibly up to 1 TeV) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar in the 20-120 GeV range, making this the second pulsar detected by a ground-based Cherenkov telescope. We will review the latest developments in VHE pulsar science, including an overview of recent observations and refinements to radiation models and magnetic field structures. This will assist us in interpreting the VHE emission detected from the Crab and Vela pulsars, and predicting the level of VHE emission expected from other pulsars, which will be very important for the upcoming CTA.
PSR J0218+4232 is one of the most energetic millisecond pulsars known and has long been considered as one of the best candidates for very high-energy (VHE; >100 GeV) gamma-ray emission. Using 11.5 years of Fermi Large Area Telescope (LAT) data betwee
The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 Ge
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, i
Gamma-ray bursts (GRBs) are among the most luminous sources in the universe. The nature of their emission at TeV energies is one of the most relevant open issues related to these events. The temporal and spectral features inferred from the early and
We investigate the electron-positron pair cascade taking place in the magnetosphere of a rapidly rotating black hole. Because of the spacetime frame dragging, the Goldreich-Julian charge density changes sign in the vicinity of the event horizon, whic