ﻻ يوجد ملخص باللغة العربية
The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.
Bunches of high charge (up to 10 nC) are compressed in length in the CTF II magnetic chicane to less than 0.2 mm rms. The short bunches radiate coherently in the chicane magnetic field, and the horizontal and longitudinal phase space density distribu
Diffraction Anomalous Fine Structure (DAFS) spectroscopy uses resonant elastic x-rays scattering as an atomic, shell and site selective probe that gives information on the electronic structure and the local atomic environment as well as on the long r
We have studied the angular fluctuations in the speed of light with respect to the apex of the dipole of Cosmic Microwave Background (CMB) radiation using the experimental data obtained with GRAAL facility, located at the European Synchrotron Radiati
When the electrons stored in the ring of the European Synchrotron Radiation Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in flight) the lower energy of the scattered electron spectra, the Compton Edge (CE), is given by the tw
Three experimental concepts investigating possible anisotropy of the speed of light are presented. They are based on i) beam deflection in a 180 degree magnetic arc, ii) narrow resonance production in an electron-positron collider, and iii) the ratio