ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Synchrotron Radiation Measurements in the CLIC Test Facility (CTF II)

127   0   0.0 ( 0 )
 نشر من قبل Roberto Corsini
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bunches of high charge (up to 10 nC) are compressed in length in the CTF II magnetic chicane to less than 0.2 mm rms. The short bunches radiate coherently in the chicane magnetic field, and the horizontal and longitudinal phase space density distributions are affected. This paper reports the results of beam emittance and momentum measurements. Horizontal and vertical emittances and momentum spectra were measured for different bunch compression factors and bunch charges. In particular, for 10 nC bunches, the mean beam momentum decreased by about 5% while the FWHM momentum spread increased from 5% to 19%. The experimental results are compared with simulations made with the code TraFiC4.



قيم البحث

اقرأ أيضاً

57 - L. Rinolfi , H. Braun , R. Pittin 2000
The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.
An understanding of collective effects is of fundamental importance for the design and optimisation of the performance of modern accelerators. In particular, the design of an accelerator with strict requirements on the beam quality, such as a free el ectron laser (FEL), is highly dependent on a correspondence between simulation, theory and experiments in order to correctly account for the effect of coherent synchrotron radiation (CSR), and other collective effects. A traditional approach in accelerator simulation codes is to utilise an analytic one-dimensional approximation to the CSR force. We present an extension of the 1D CSR theory in order to correctly account for the CSR force at the entrance and exit of a bending magnet. A limited range of applicability to this solution, in particular in bunches with a large transverse spot size or offset from the nominal axis, is recognised. More recently developed codes calculate the CSR effect in dispersive regions directly from the Lienard-Wiechert potentials, albeit with approximations to improve the computational time. A new module of the General Particle Tracer (GPT) code was developed for simulating the effects of CSR, and benchmarked against other codes. We experimentally demonstrate departure from the commonly used 1D CSR theory for more extreme bunch length compression scenarios at the FERMI FEL facility. Better agreement is found between experimental data and the codes which account for the transverse extent of the bunch, particularly in more extreme compression scenarios.
We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~textrm{cm}^{-1}$, and are high ly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by RF diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multi-bend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.
68 - Robert L. Warnock 2017
Theory predicts that Coherent Synchrotron Radiation (CSR) in electron storage rings should appear in whispering gallery modes. In an idealized model these are resonances of the vacuum chamber that are characterized by their high frequencies and conce ntration of the field near the outer wall of the chamber. The resonant modes imply a series of sharp peaks in the frequency spectrum of CSR, and very long wake fields which lead to interbunch communication. Theory and experimental evidence for this behavior will be reviewed.
Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigg lers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter $K$. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of $K$. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا