ﻻ يوجد ملخص باللغة العربية
The $^{13}C$ substitutions of molecule $HC_7N$ were observed in TMC-1 using the J = 12 - 11, J = 13 - 12 rotational transitions in the frequency range 12.4 to 13.6 GHz. We present the first detection the $^{13}C$ isotopic species of $HC_7N$ in the interstellar medium, based on the average of a number of weak rotational transitions. This paper describes the calibration and data averaging process that is also used in a search for large cyanopolyyne molecules in TMC-1 using the 100m Robert C. Byrd Green Bank Telescope (GBT). The capabilities of the GBT 11 to 15 GHz observing system are described along with a discussion of numerical methods for averaging observations of a number of weak spectral lines to detect new interstellar molecules.
The rotational spectral lines of c-C$_3$H$_2$ and two kinds of the $^{13}$C isotopic species, c-$^{13}$CCCH$_2$ ($C_{2v}$ symmetry) and c-CC$^{13}$CH$_2$ ($C_s$ symmetry) have been observed in the 1-3 mm band toward the low-mass star-forming region L
We derive molecular-gas-phase $^{12}$C/$^{13}$C isotope ratios for the central few 100 pc of the three nearby starburst galaxies NGC 253, NGC 1068, and NGC 4945 making use of the $lambda$ $sim$ 3 mm $^{12}$CN and $^{13}$CN $N$ = 1--0 lines in the ALM
The dramatic increase in sensitivity, spectral coverage and resolution of radio astronomical facilities in recent years has opened new possibilities for observation of chemical differentiation and isotopic fractionation in protostellar sources to she
We have carried out observations of CCH and its two $^{13}$C isotopologues, $^{13}$CCH and C$^{13}$CH, in the 84 - 88 GHz band toward two starless cores, L1521B and L134N (L183), using the Nobeyama 45 m radio telescope. We have detected C$^{13}$CH wi
Abundances of light elements in dwarf stars of different ages are important constraints for stellar yields, Galactic chemical evolution and exoplanet chemical composition studies. We have measured C and N abundances and $^{12}$C/$^{13}$C ratios for a