ﻻ يوجد ملخص باللغة العربية
The dramatic increase in sensitivity, spectral coverage and resolution of radio astronomical facilities in recent years has opened new possibilities for observation of chemical differentiation and isotopic fractionation in protostellar sources to shed light on their spatial and temporal evolution. In warm interstellar environments, methanol is an abundant species, hence spectral data for its isotopic forms are of special interest. In the present work, the millimeter-wave spectrum of the $^{13}$CH$_3$OD isotopologue has been investigated over the region from 150$-$510 GHz to provide a set of transition frequencies for potential astronomical application. The focus is on two types of prominent $^{13}$CH$_3$OD spectral groupings, namely the $a$-type $^qR$-branch multiplets and the $b$-type $Q$-branches. Line positions are reported for the $^qR(J)$ clusters for $J = 3$ to 10 for the $v_{rm t} = 0$ and 1 torsional states, and for a number of $v_{rm t} = 0$ and 1 $^rQ(J)$ or $^pQ(J)$ line series up to $J = 25$. The frequencies have been fitted to a multi-parameter torsion-rotation Hamiltonian, and upper level excitation energies have been calculated from the resulting molecular constants.
Methyl mercaptan (CH$_3$SH) is an important sulfur-bearing species in the interstellar medium, terrestrial environment, and potentially in planetary atmospheres. The aim of the present study is to provide accurate spectroscopic parameters for the mos
Methyl mercaptan (CH3SH) is a known interstellar molecule with abundances high enough that the detection of some of its minor isotopologues is promising. The present study aims at providing accurate spectroscopic parameters for the (13)CH3SH isotopol
Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high -- as well as low -- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated m
The rotational spectral lines of c-C$_3$H$_2$ and two kinds of the $^{13}$C isotopic species, c-$^{13}$CCCH$_2$ ($C_{2v}$ symmetry) and c-CC$^{13}$CH$_2$ ($C_s$ symmetry) have been observed in the 1-3 mm band toward the low-mass star-forming region L
The $^{13}C$ substitutions of molecule $HC_7N$ were observed in TMC-1 using the J = 12 - 11, J = 13 - 12 rotational transitions in the frequency range 12.4 to 13.6 GHz. We present the first detection the $^{13}C$ isotopic species of $HC_7N$ in the in