ﻻ يوجد ملخص باللغة العربية
We have numerically explored the stable planetary geometry for the multiple systems involved in a 2:1 mean motion resonance, and herein we mainly study the HD 82943 system by employing two sets of the orbital parameters (Mayor et al. 2004; Ji et al. 2004). In the simulations, we find that all stable orbits are related to the 2:1 resonance that can help to remain the semi-major axes for two companions almost unaltered over the secular evolution for $10^{8}$ yr. In addition, we also show that there exist three possible stable configurations:(1) Type I, only $theta_{1} approx 0^{circ}$, (2) Type II, $theta_{1}approxtheta_{2}approxtheta_{3}approx 0^{circ}$ (aligned case), and (3) Type III, $theta_{1}approx 180^{circ}$, $theta_{2}approx0^{circ}$, $theta_{3}approx180^{circ}$ (antialigned case), where two resonant arguments are $theta_{1} = lambda_{1} - 2lambda _{2} + varpi_{1}$ and $theta_{2} = lambda_{1} - 2lambda_{2} + varpi_{2}$, the relative apsidal longitudes $theta_{3} = varpi_{1}-varpi_{2}=Deltavarpi$. And we find that other 2:1 resonant systems (e.g., GJ 876) may possess one of three stable orbits in their realistic motions. Moreover, we also study the existence of the assumed terrestrial bodies at $sim 1$ AU for HD 82943 and GJ 876 systems (see main texts).
We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodne
We carry out numerical simulations to explore the dynamical evolution of the HD 82943 and HD 37124 planetary systems,which both have two Jupiter-like planets. By simulating various planetary configurations in the neighborhood of the fitting orbits, w
We present six years of new radial-velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these data, yielding four possible con
We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms of stabilizing the system: the 2:1 mean motion resonance between the two plan
The results of an extensive numerical study of the periodic orbits of planar, elliptic restricted three-body planetary systems consisting of a star, an inner massive planet and an outer mass-less body in the external 1:2 mean-motion resonance are pre