ﻻ يوجد ملخص باللغة العربية
We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodness of fit and the dynamical properties of the best-fit double-Keplerian model as a function of the poorly constrained eccentricity and argument of periapse of the outer planets orbit. The fit with the minimum chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar. However, the minimum is relatively shallow, and there is a wide range of fits outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest order, eccentricity-type mean-motion resonance variables at the 2:1 commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For sin i = 1, there are also some good fits with only theta_1 (involving the inner planets periapse longitude) librating that are stable for at least 10^8 years. The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for theta_2 for the stable good fit with the smallest libration amplitudes of both theta_1 and theta_2. We do not find any good fits that are non-resonant and stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1 mean-motion resonance, with at least theta_1 librating, and the observations may even be consistent with small-amplitude librations of both theta_1 and theta_2.
We present an updated analysis of radial velocity data of the HD 82943 planetary system based on 10 years of measurements obtained with the Keck telescope. Previous studies have shown that the HD 82943 system has two planets that are likely in 2:1 me
We have numerically explored the stable planetary geometry for the multiple systems involved in a 2:1 mean motion resonance, and herein we mainly study the HD 82943 system by employing two sets of the orbital parameters (Mayor et al. 2004; Ji et al.
We carry out numerical simulations to explore the dynamical evolution of the HD 82943 and HD 37124 planetary systems,which both have two Jupiter-like planets. By simulating various planetary configurations in the neighborhood of the fitting orbits, w
We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms of stabilizing the system: the 2:1 mean motion resonance between the two plan
We present six years of new radial-velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these data, yielding four possible con