ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable 1:2 Resonant Periodic Orbits in Elliptic Three-Body Systems

175   0   0.0 ( 0 )
 نشر من قبل Nader Haghighipour
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of an extensive numerical study of the periodic orbits of planar, elliptic restricted three-body planetary systems consisting of a star, an inner massive planet and an outer mass-less body in the external 1:2 mean-motion resonance are presented. Using the method of differential continuation, the locations of the resonant periodic orbits of such systems are identified and through an extensive study of their phase-parameter space, it is found that the majority of the resonant periodic orbits are unstable. For certain values of the mass and the orbital eccentricity of the inner planet, however, stable periodic orbits can be found. The applicability of such studies to the 1:2 resonance of the extrasolar planetary system GJ876 is also discussed.



قيم البحث

اقرأ أيضاً

We consider the classical problem of the continuation of periodic orbits surviving to the breaking of invariant lower dimensional resonant tori in nearly integrable Hamiltonian systems. In particular we extend our previous results (presented in CNSNS , 61:198-224, 2018) for full dimensional resonant tori to lower dimensional ones. We develop a constructive normal form scheme that allows to identify and approximate the periodic orbits which continue to exist after the breaking of the resonant torus. A specific feature of our algorithm consists in the possibility of dealing with degenerate periodic orbits. Besides, under suitable hypothesis on the spectrum of the approximate periodic orbit, we obtain information on the linear stability of the periodic orbits feasible of continuation. A pedagogical example involving few degrees of freedom, but connected to the classical topic of discrete solitons in dNLS-lattices, is also provided.
We reconsider the classical problem of the continuation of degenerate periodic orbits in Hamiltonian systems. In particular we focus on periodic orbits that arise from the breaking of a completely resonant maximal torus. We here propose a suitable no rmal form construction that allows to identify and approximate the periodic orbits which survive to the breaking of the resonant torus. Our algorithm allows to treat the continuation of approximate orbits which are at leading order degenerate, hence not covered by classical averaging methods. We discuss possible future extensions and applications to localized periodic orbits in chains of weakly coupled oscillators.
The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect exoplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a single planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35 percent of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, 2) another 40 percent cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets.
We develop a theory of integrable dispersive deformations of 2+1 dimensional Hamiltonian systems of hydrodynamic type following the scheme proposed by Dubrovin and his collaborators in 1+1 dimensions. Our results show that the multi-dimensional situa tion is far more rigid, and generic Hamiltonians are not deformable. As an illustration we discuss a particular class of two-component Hamiltonian systems, establishing the triviality of first order deformations and classifying Hamiltonians possessing nontrivial deformations of the second order.
We classify 2+1 dimensional integrable systems with nonlocality of the intermediate long wave type. Links to the 2+1 dimensional waterbag system are established. Dimensional reductions of integrable systems constructed in this paper provide dispers ive regularisations of hydrodynamic equations governing propagation of long nonlinear waves in a shear flow with piecewise linear velocity profile (for special values of vorticities).
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا