ﻻ يوجد ملخص باللغة العربية
Observations of the Seyfert 2 and starburst galaxy NGC 7130 with the Chandra X-ray Observatory illustrate that both of these phenomena contribute significantly to the galaxys detectable X-ray emission. The active galactic nucleus (AGN) is strongly obscured, buried beneath column density N_H > 10^{24} cm^{-2}, and it is most evident in a prominent Fe K alpha emission line with equivalent width greater than 1 keV. The AGN accounts for most (60%) of the observed X-rays at energy E > 2 keV, with the remainder due to spatially extended star formation. The soft X-ray emission is strong and predominantly thermal, on both small and large scales. We attribute the thermal emission to stellar processes. In total, the AGN is responsible for only one-third of the observed 0.5--10 keV luminosity of 3 x 10^{41} erg/s of this galaxy, and less than half of its bolometric luminosity. Starburst/AGN composite galaxies like NGC 7130 are truly common, and similar examples may contribute significantly to the high-energy cosmic X-ray background while remaining hidden at lower energies, especially if they are distant.
We present the discovery of a small kinematically decoupled core of 0.2$^{primeprime}$ (60 pc) in radius as well as an outflow jet in the archetypical AGN-starburst composite galaxy NGC 7130 from integral field data obtained with the adaptive optics-
AGN are a key ingredient for understanding galactic evolution. AGN-driven outflows are one of the manifestations of feedback. The AO mode for MUSE at the VLT permits to study the innermost tens of parsecs of nearby AGN in the optical. We present a de
We use the exact-deconstruction prescription to lift various squashed-$S^3$ partition functions with supersymmetric-defect insertions to four-dimensional superconformal indices. Starting from three-dimensional circular-quiver theories with vortex-loo
The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplif
We use the technique of deconstruction to lift dualities from 2+1 to 3+1 dimensions. In this work we demonstrate the basic idea by deriving S-duality of maximally supersymmetric electromagnetism in 3+1 dimensions from mirror symmetry in 2+1. We also