ترغب بنشر مسار تعليمي؟ اضغط هنا

The complex multi-component outflow of the Seyfert galaxy NGC 7130

102   0   0.0 ( 0 )
 نشر من قبل S\\'ebastien Comer\\'on
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AGN are a key ingredient for understanding galactic evolution. AGN-driven outflows are one of the manifestations of feedback. The AO mode for MUSE at the VLT permits to study the innermost tens of parsecs of nearby AGN in the optical. We present a detailed analysis of the ionised gas in the central regions of NGC 7130, an archetypical composite Seyfert and nuclear starburst galaxy. We achieve an angular resolution of 0.17$^{primeprime}$ (50 pc). We performed a multi-component analysis of the main ISM lines and identified nine kinematic components, six of which correspond to the outflow. The outflow is biconic and has velocities of a few $100,{rm km,s^{-1}}$ with respect to the disc. We decompose the approaching side of the outflow into a broad and a narrow component with typical velocity dispersions below and above $sim200,{rm km,s^{-1}}$, respectively. The blueshifted narrow component has substructure, in particular a collimated plume aligned with the radio jet, indicating that it may be jet-powered. The redshifted lobe is composed of two Narrow Components and a Broad Component. An additional redshifted component is seen outside the main outflow axis. Line ratio diagnostics indicate that the outflow gas in the main axis is AGN-powered whereas the off-axis component has LINER properties. The ionised gas mass outflow rate is $dot{M}=1.2pm0.7,M_{odot},{rm yr^{-1}}$ and the kinetic power is $dot{E}_{rm kin}=(2.7pm2.0)times10^{41},{rm erg,s^{-1}}$, which corresponds to $F_{rm kin}=0.12pm0.09%$ of the bolometric AGN power. The combination of high angular resolution integral field spectroscopy and a careful multi-component decomposition allows a uniquely detailed view of the outflow in NGC 7130, illustrating that AGN kinematics are more complex than traditionally derived from less sophisticated data and analyses. (abridged)



قيم البحث

اقرأ أيضاً

119 - S. Veilleux 2000
We report on a detailed kinematic study of the galactic-scale outflow in the Seyfert galaxy NGC 2992. The TAURUS-2 Imaging Fabry-Perot Interferometer was used on the Anglo-Australian 3.9-m telescope to derive the two-dimensional velocity field of the Halpha-emitting gas over the central arcminute of NGC 2992. The complete two-dimensional coverage of the data combined with simple kinematic models of rotating axisymmetric disks allows us to differentiate the outflowing material from the line-emitting material associated with the galactic disk. The kinematics of the disk component out to R = 3.0 kpc are well modeled by pure circular rotation. The outflow component is distributed into two wide cones with opening angle of 125 -- 135 degrees and extending 2.8 kpc (18) on both sides of the nucleus at nearly right angles to the disk kinematic major axis. The outflow on the SE side of the nucleus is made of two distinct kinematic components interpreted as the front and back walls of a cone. The azimuthal velocity gradient in the back-wall component reflects residual rotational motion which indicates either that the outflowing material was lifted from the disk or that the underlying galactic disk is contributing slightly to this component. A single outflow component is detected in the NW cone. The most likely energy source for this outflow is a hot bipolar thermal wind powered on sub-kpc scale by the AGN and diverted along the galaxy minor axis by the pressure gradient of the ISM in the host galaxy. The data are not consistent with a starburst-driven wind or a collimated outflow powered by radio jets. (abridged)
115 - S.Martin , K. Kohno , T. Izumi 2014
The nearby Sy 1 galaxy NGC 1097 represents an ideal laboratory to explore the molecular chemistry in the presence and surroundings of an active galactic nucleus. Exploring the distribution of different molecular species allows us to understand the ph ysical processes affecting the ISM both in the AGN vicinity as well as in the outer star forming molecular ring. We carried out 3 mm ALMA observations of HCN, HCO+, CCH, CS, HNCO, SiO, HC3N, and SO as well as the 13C isotopologues. All species were imaged over the central 2 kpc (~30) of the galaxy at a resolution of ~2.2x1.5 (150 pc x 100 pc). HCO+ and CS appear to be slightly enhanced in the star forming ring. CCH, showing the largest variations across NGC 1097, is suggested to be a good tracer of both obscured and early stage star formation. HNCO, SiO and HC3N are significantly enhanced in the inner circumnuclear disk surrounding the AGN. Differences in the molecular abundances are observed between the star forming ring and the inner circumnuclear disk. We conclude that the HCN/HCO+ and HCN/CS differences observed between AGN dominated and starburst galaxies are not due to a HCN enhancement due to X-rays, but rather this enhancement is produced by shocked material at distances of 200 pc from the AGN. Additionally we claim the lower HCN/CS to be a combination of a small under-abundance of CS in AGNs together with excitation effects, where a high dense gas component (~10^6 cm^-3) may be more prominent in SB galaxies. However the most promising are the differences found among the dense gas tracers which, at our modest spatial resolution, seem to outline the physical structure of the molecular disk around the AGN. In this picture, HNCO probes the well shielded gas in the disk, surrounding the dense material moderately exposed to X-ray radiation traced by HC3N. Finally SiO might be the innermost molecule in the disk structure.
299 - J. Ebrero , V. Domcek (2 , 3 2021
(Abridged) NGC 985 was observed by XMM-Newton twice in 2015, revealing that the source was coming out from a soft X-ray obscuration event that took place in 2013. These kinds of events are possibly recurrent since a previous XMM-Newton archival obser vation in 2003 also showed signatures of partial obscuration. We have analyzed the high-resolution X-ray spectra of NGC 985 obtained by the RGS in 2003, 2013, and 2015 in order to characterize the ionized absorbers superimposed to the continuum and to study their response as the ionizing flux varies. We found that up to four warm absorber (WA) components were present in the grating spectra of NGC 985, plus a mildy ionized (log xi ranging between 0.2 and 0.5) obscuring (log N(H) of about 22.3) wind outflowing at about 6000 km/s. The absorbers have a log N(H) ranging from 21 to about 22.5, and ionization parameters ranging from 1.6 to 2.9. The most ionized component is also the fastest, moving away at 5100 km/s, while the others outflow in two kinematic regimes, at about 600 and 350 km/s. These components showed variability at different time scales in response to changes in the ionizing continuum. Assuming that these changes are due to photoionization we have obtained upper and lower limits on the density of the gas and therefore on its distance, finding that the closest two components are at pc-scale distances, while the rest may extend up to tens of pc from the central source. The fastest, most ionized WA component accounts for the bulk of the kinetic luminosity injected back into the ISM of the host galaxy, which is on the order of 0.8% of the bolometric luminosity of NGC 985. According to the models, this amount of kinetic energy per unit time would be sufficient to account for cosmic feedback.
We present ALMA observations of the CO(2-1) and CO(3-2) molecular gas transitions and associated (sub)-mm continua of the nearby Seyfert 1.5 galaxy NGC3227 with angular resolutions 0.085-0.21 (7-15pc). On large scales the cold molecular gas shows cir cular motions as well as streaming motions on scales of a few hundred parsecs associated with a large scale bar. We fitted the nuclear ALMA 1.3mm emission with an unresolved component and an extended component. The 850$mu$m emission shows at least two extended components, one along the major axis of the nuclear disk and the other along the axis of the ionization cone. The molecular gas in the central region (1 ~73pc) shows several CO clumps with complex kinematics which appears to be dominated by non-circular motions. While we cannot demonstrate conclusively the presence of a warped nuclear disk, we also detected non-circular motions along the kinematic minor axis. They reach line-of-sight velocities of v-vsys =150-200km/s. Assuming that the radial motions are in the plane of the galaxy, then we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy being entrained by the AGN wind. We derive molecular outflow rates of $5,M_odot,{rm yr}^{-1}$ and $0.6,M_odot,{rm yr}^{-1}$ at projected distances of up to 30pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of $5times 10^{5},M_odot$ and an average column density $N({rm H}_2) = 2-3times 10^{23},{rm cm}^{-2}$ in the inner 15pc. The nuclear molecular gas and sub-mm continuum emission of NGC3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN. (Abridged)
New observations using narrow band imaging, long-slit spectroscopy and MERLIN observations of the nuclear region of the Seyfert galaxy NGC~4051 have been made. An edge brightened, triangular region of ionized gas extending 420 pc from the centre of t he galaxy has been detected. Long-slit spectra of this ionised gas, taken at 1.5arcsec from the core, show the oiii emission line to consist of two velocity components, both blue-shifted from the systemic radial velocity, with velocity widths of 140kms and separated by 120kms. This region is co-spatial with weak extended radio emission and is suggestive of a centrally driven outflow. The oiii line spectrum and image of this region have been modelled as an outflowing conical structure at 50degr to the line of sight with a half opening angle of 23degr . In addition to the extended structure, high resolution MERLIN observations of the 18-cm nuclear radio emission reveal a compact (1arcsec) radio triple source in PA 73$^{circ}$. This source is coincident with the HST-imaged emission line structure. These high resolution observations are consistent with a more compact origin of activity (i.e. a Seyfert nucleus) than a starburst region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا