ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating The Possible Anomaly Between Nebular and Stellar Oxygen Abundances in the Dwarf Irregular Galaxy WLM

63   0   0.0 ( 0 )
 نشر من قبل Henry Lee
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Henry Lee -




اسأل ChatGPT حول البحث

We obtained new optical spectra of 13 H II regions in WLM with EFOSC2; oxygen abundances are derived for nine H II regions. The temperature-sensitive [O III] 4363 emission line was measured in two bright H II regions HM7 and HM9. The direct oxygen abundances for HM7 and HM9 are 12+log(O/H) = 7.72 +/- 0.04 and 7.91 +/- 0.04, respectively. We adopt a mean oxygen abundance of 12+log(O/H) = 7.83 +/- 0.06. This corresponds to [O/H] = -0.83 dex, or 15% of the solar value. In H II regions where [O III] 4363 was not measured, oxygen abundances derived with bright-line methods are in general agreement with direct values of the oxygen abundance to an accuracy of about 0.2 dex. In general, the present measurements show that the H II region oxygen abundances agree with previous values in the literature. The nebular oxygen abundances are marginally consistent with the mean stellar magnesium abundance ([Mg/H] = -0.62). However, there is still a 0.62 dex discrepancy in oxygen abundance between the nebular result and the A-type supergiant star WLM15 ([O/H] = -0.21). Non-zero reddening values derived from Balmer line ratios were found in H II regions near a second H I peak. There may be a connection between the location of the second H I peak, regions of higher extinction, and the position of WLM15 on the eastern side of the galaxy.



قيم البحث

اقرأ أيضاً

70 - Henry Lee , 2005
To test the existence of a possible radial gradient in oxygen abundances within the Local Group dwarf irregular galaxy NGC 6822, we have obtained optical spectra of 19 nebulae with the EFOSC2 spectrograph on the 3.6-m telescope at ESO La Silla. The e xtent of the measured nebulae spans galactocentric radii in the range between 0.05 kpc and 2 kpc (over four exponential scale lengths). In five H II regions (Hubble I, Hubble V, Kalpha, Kbeta, KD28e), the temperature-sensitive [O III] 4363 emission line was detected, and direct oxygen abundances were derived. Oxygen abundances for the remaining H II regions were derived using bright-line methods. The oxygen abundances for three A-type supergiant stars are slightly higher than nebular values at comparable radii. Linear least-square fits to various subsets of abundance data were obtained. When all of the measured nebulae are included, no clear signature is found for an abundance gradient. A fit to only newly observed H II regions with [O III] 4363 detections yields an oxygen abundance gradient of -0.14 +/- 0.07 dex/kpc. The gradient becomes slightly more significant (-0.16 +/- 0.05 dex/kpc) when three additional H II regions with [O III] 4363 measurements from the literature are added. Assuming no abundance gradient, we derive a mean nebular oxygen abundance 12+log(O/H) = 8.11 +/- 0.10 from [O III] 4363 detections in the five H II regions from our present data; this mean value corresponds to [O/H] = -0.55.
67 - A. T. Valcheva 2007
We identify the rich Carbon star population of the Magellanic-type dwarf irregular galaxy WLM (Wolf-Lundmark-Melotte) and study its photometric properties from deep near-IR observations. The galaxy exhibits also a clear presence of Oxygen rich popula tion. We derive a Carbon to M-star ratio of C/M=0.56(+/-0.12), relatively high in comparison with many galaxies. The spatial distribution of the AGB stars in WLM hints at the presence of two stellar complexes with a size of a few hundred parsecs. Using the HI map of WLM and the derived gas-to-dust ratio for this galaxy we re-determined the distance modulus of WLM from the IR photometry of four known Cepheids, obtaining (m-M)o=24.84(+/-0.14) mag. In addition, we determine the scale length of 0.75(+/-)0.14 kpc of WLM disk in J-band.
59 - M. Khademi , Y. Yang , F. Hammer 2021
WLM is a dwarf irregular that is seen almost edge-on that has prompted a number of kinematical studies investigating its rotation curve and its dark matter content. In this paper, we investigate the origin of the strong asymmetry of the rotation curv e, which shows a significant discrepancy between the approaching and the receding side. We first examine whether an $m = 1$ perturbation (lopsidedness) in the halo potential could be a mechanism creating such kinematical asymmetry. To do so, we fit a theoretical rotational velocity associated with an $m = 1$ perturbation in the halo potential model to the observed data via a $chi-$squared minimization method. We show that a lopsided halo potential model can explain the asymmetry in the kinematic data reasonably well. We then verify that the kinematical classification of WLM shows that its velocity field is significantly perturbed due to both its asymmetrical rotation curve and also its peculiar velocity dispersion map. In addition, based on a kinemetry analysis, we find that it is possible for WLM to lie in the transition region, where the disk and merger coexist. In conclusion, it appears that the rotation curve of WLM diverges significantly from that of an ideal rotating disk, which may significantly affect investigations of its dark matter content.
We present 12CO J = 1-0 and J = 2-1 observations of the low metallicity (12 + log(O/H) = 7.74) Local Group dwarf irregular galaxy WLM made with the 15 m SEST and 14 m FCRAO telescopes. Despite the presence a number of HII regions, we find no CO emiss ion. We obtain low upper limits on the integrated intensity (I(CO) >= 0.18 K km/s for CO (1-0)). The non-detection is consistent with the result of Taylor, Kobulnicky and Skillman (1998), that dwarf galaxies below a metallicity of ~ 7.9 are not detected in CO emission. WLM shows that this trend continues for low metallicity galaxies even as their metallicities approach 7.9. These results are consistent with the models of the metal poor ISM by Norman and Spaans (1997). By comparing our CO data with observations of star formation in WLM, we find evidence for a high CO to H$_2$ conversion factor.
In the indirect dark matter (DM) detection framework, the DM particles would produce some signals by self-annihilating and creating standard model products such as gamma rays, which might be detected by ground-based telescopes. Dwarf irregular galaxi es represent promising targets for the search for DM as they are assumed to be dark matter dominated systems at all radii. These dwarf irregular galaxies are rotationally supported with relatively simple kinematics which lead to small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. telescopes observed the irregular dwarf galaxy Wolf-Lundmark-Melotte (WLM) for a live time of 19 hours. These observations are the very first ones made by an imaging atmospheric Cherenkov telescope toward this kind of object. We search for a DM signal looking for an excess of gamma rays over the background in the direction of the WLM galaxy. We present the first results obtained on the velocity weighted cross section for DM self-annihilation as a function of DM particle mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا