ﻻ يوجد ملخص باللغة العربية
We identify the rich Carbon star population of the Magellanic-type dwarf irregular galaxy WLM (Wolf-Lundmark-Melotte) and study its photometric properties from deep near-IR observations. The galaxy exhibits also a clear presence of Oxygen rich population. We derive a Carbon to M-star ratio of C/M=0.56(+/-0.12), relatively high in comparison with many galaxies. The spatial distribution of the AGB stars in WLM hints at the presence of two stellar complexes with a size of a few hundred parsecs. Using the HI map of WLM and the derived gas-to-dust ratio for this galaxy we re-determined the distance modulus of WLM from the IR photometry of four known Cepheids, obtaining (m-M)o=24.84(+/-0.14) mag. In addition, we determine the scale length of 0.75(+/-)0.14 kpc of WLM disk in J-band.
WLM is a dwarf irregular that is seen almost edge-on that has prompted a number of kinematical studies investigating its rotation curve and its dark matter content. In this paper, we investigate the origin of the strong asymmetry of the rotation curv
We present 12CO J = 1-0 and J = 2-1 observations of the low metallicity (12 + log(O/H) = 7.74) Local Group dwarf irregular galaxy WLM made with the 15 m SEST and 14 m FCRAO telescopes. Despite the presence a number of HII regions, we find no CO emiss
In the indirect dark matter (DM) detection framework, the DM particles would produce some signals by self-annihilating and creating standard model products such as gamma rays, which might be detected by ground-based telescopes. Dwarf irregular galaxi
We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state
We obtained new optical spectra of 13 H II regions in WLM with EFOSC2; oxygen abundances are derived for nine H II regions. The temperature-sensitive [O III] 4363 emission line was measured in two bright H II regions HM7 and HM9. The direct oxygen ab