ﻻ يوجد ملخص باللغة العربية
To test the existence of a possible radial gradient in oxygen abundances within the Local Group dwarf irregular galaxy NGC 6822, we have obtained optical spectra of 19 nebulae with the EFOSC2 spectrograph on the 3.6-m telescope at ESO La Silla. The extent of the measured nebulae spans galactocentric radii in the range between 0.05 kpc and 2 kpc (over four exponential scale lengths). In five H II regions (Hubble I, Hubble V, Kalpha, Kbeta, KD28e), the temperature-sensitive [O III] 4363 emission line was detected, and direct oxygen abundances were derived. Oxygen abundances for the remaining H II regions were derived using bright-line methods. The oxygen abundances for three A-type supergiant stars are slightly higher than nebular values at comparable radii. Linear least-square fits to various subsets of abundance data were obtained. When all of the measured nebulae are included, no clear signature is found for an abundance gradient. A fit to only newly observed H II regions with [O III] 4363 detections yields an oxygen abundance gradient of -0.14 +/- 0.07 dex/kpc. The gradient becomes slightly more significant (-0.16 +/- 0.05 dex/kpc) when three additional H II regions with [O III] 4363 measurements from the literature are added. Assuming no abundance gradient, we derive a mean nebular oxygen abundance 12+log(O/H) = 8.11 +/- 0.10 from [O III] 4363 detections in the five H II regions from our present data; this mean value corresponds to [O/H] = -0.55.
We obtained new optical spectra of 13 H II regions in WLM with EFOSC2; oxygen abundances are derived for nine H II regions. The temperature-sensitive [O III] 4363 emission line was measured in two bright H II regions HM7 and HM9. The direct oxygen ab
We present a wide-field, high spatial and velocity resolution map of the entire extended HI distribution of the nearby Local Group dwarf galaxy NGC 6822. The observations were obtained with the Parkes single-dish telescope and the Australia Telescope
A transient in the Local Group dwarf irregular galaxy NGC 6822 (Barnards Galaxy) was discovered on 2017 August 2 and is only the second classical nova discovered in that galaxy. We conducted optical, near-ultraviolet, and X-ray follow-up observations
Recent estimates of the Cepheid distance modulus of NGC 6822 differ by 0.18 mag. To investigate this we present new multi-epoch JHKs photometry of classical Cepheids in the central region of NGC 6822 and show that there is a zero-point difference fro
We report the discovery of a large number of short-period variable stars in the dwarf irregular galaxy NGC6822, based on deep time-series imaging carried out with the ESO Very Large Telescope. In particular, we found a modest population of RR Lyrae s