ترغب بنشر مسار تعليمي؟ اضغط هنا

Protoplanetary disk in V645 Cyg as seen with H2O and methanol masers

69   0   0.0 ( 0 )
 نشر من قبل Maxim A. Voronkov
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio images of maser spots in the infrared source GL2789, connected with the young stellar object V645 Cyg, have been obtained as a result of the radio interferometric observations of H2O maser at 22 GHz and methanol maser at 6.7 GHz, with the VLBI arrays VLBA and EVN. It was shown that the position of the masers coincide with the optical object within 0.2. The maser spots are located along the line North-South, and their position and radial velocity can be described by a model of the Keplerian disk with a maximum radius of 40 AU for H2O maser and 800 AU for methanol maser. The H2O and methanol maser spots have not been resolved, and lower limits of the brightness temperature is 2x10^{13} K and 1.4x10^9 K, respectively. A model of the maser was suggested in which the maser emission is generated in extended water and methanol envelopes of icy planets orbiting the young star.



قيم البحث

اقرأ أيضاً

VLBA and EVN radio observations of H2O masers at 22 GHz and methanol masers at 6.7 GHz have been used to obtain images of the maser spots in the infrared object GL2789, which is associated with the young stellar object V645Cyg. The position of these masers coincides with that of the optical object to within 0.2 arcsec. The maser spots are located in a line oriented north--south, and their positions and radial velocities can be described by a model with a Keplerian disk with maximum radius 40 AU for the H2O masers and 800 AU for the methanol masers. The H2O and methanol masers spots are unresolved, and the lower limits for their brightness temperatures are 2x10^{13} K and 1.4x10^9 K, respectively. A model in which the maser radiation is formed in extended water-methanol clouds associated with ice planets forming around the young star is proposed.
We present high resolution (R=24,000) L-band spectra of the young intermediate mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface regio n of the circumstellar disk. We explore the use of the new BT2 (Barber et al. 2006) water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN (Rothman et al. 1998) water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~ 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~ 1500 K. The column densities of the emitting water and OH are large, ~ 10^{21} cm-2 and ~ 10^{20} cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks (e.g., Bethell and Bergin 2009), although the large OH column density is less easily accounted for.
We present Atacama Large Millimeter Array CO(3$-$2) and HCO$^+$(4$-$3) observations covering the central $1rlap{.}5$$times$$1rlap{.}5$ region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity ($sim$0.1 mJy beam$^{-1}$) and ang ular resolution ($sim$$0rlap{.}09 approx 35$ AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3$-$2), 17 in HCO$^+$(4$-$3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with $0.5$ km s$^{-1}$ channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of $sim$50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star $theta^1$ Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.
The formation of planets occurs within protoplanetary disks surrounding young stars, resulting in perturbation of the gas and dust surface densities. Here, we report the first evidence of spatially resolved gas surface density ($Sigma_{g}$) perturbat ion towards the AS~209 protoplanetary disk from the optically thin C$^{18}$O ($J=2-1$) emission. The observations were carried out at 1.3~mm with ALMA at a spatial resolution of about 0.3$arcsec$ $times$ 0.2$arcsec$ (corresponding to $sim$ 38 $times$ 25 au). The C$^{18}$O emission shows a compact ($le$60~au), centrally peaked emission and an outer ring peaking at 140~au, consistent with that observed in the continuum emission and, its azimuthally averaged radial intensity profile presents a deficit that is spatially coincident with the previously reported dust map. This deficit can only be reproduced with our physico-thermochemical disk model by lowering $Sigma_{gas}$ by nearly an order of magnitude in the dust gaps. Another salient result is that contrary to C$^{18}$O, the DCO$^{+}$ ($J=3-2$) emission peaks between the two dust gaps. We infer that the best scenario to explain our observations (C$^{18}$O deficit and DCO$^{+}$ enhancement) is a gas perturbation due to forming-planet(s), that is commensurate with previous continuum observations of the source along with hydrodynamical simulations. Our findings confirm that the previously observed dust gaps are very likely due to perturbation of the gas surface density that is induced by a planet of at least 0.2~M$rm_{Jupiter}$ in formation. Finally, our observations also show the potential of using CO isotopologues to probe the presence of saturn mass planet(s).
We use unpublished and published VLBI results to investigate the geometry and the statistical properties of the velocity field traced by H2O masers in five galactic regions of star formation -- Sgr B2(M), W49N, W51(MAIN), W51N, and W3(OH). In all sou rces the angular distribution of the H2O hot spots demonstrates approximate self-similarity (fractality) over almost four orders of magnitude in scale, with the calculated fractal dimension d between (approximately) 0.2 and 1.0. In all sources, the lower order structure functions for the line-of-sight component of the velocity field are satisfactorily approximated by power laws, with the exponents near their classic Kolmogorov values for the high-Reynolds-number incompressible turbulence. These two facts, as well as the observed significant excess of large deviations of the two-point velocity increments from their mean values, strongly suggest that the H2O masers in regions of star formation trace turbulence. We propose a new conceptual model of these masers in which maser hot spots originate at the sites of ultimate dissipation of highly supersonic turbulence produced in the ambient gas by the intensive gas outflow from a newly-born star. Due to the high brightness and small angular sizes of masing hot spots and the possibility of measuring their positions and velocities with high precision, they become a unique probe of supersonic turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا