ﻻ يوجد ملخص باللغة العربية
We use unpublished and published VLBI results to investigate the geometry and the statistical properties of the velocity field traced by H2O masers in five galactic regions of star formation -- Sgr B2(M), W49N, W51(MAIN), W51N, and W3(OH). In all sources the angular distribution of the H2O hot spots demonstrates approximate self-similarity (fractality) over almost four orders of magnitude in scale, with the calculated fractal dimension d between (approximately) 0.2 and 1.0. In all sources, the lower order structure functions for the line-of-sight component of the velocity field are satisfactorily approximated by power laws, with the exponents near their classic Kolmogorov values for the high-Reynolds-number incompressible turbulence. These two facts, as well as the observed significant excess of large deviations of the two-point velocity increments from their mean values, strongly suggest that the H2O masers in regions of star formation trace turbulence. We propose a new conceptual model of these masers in which maser hot spots originate at the sites of ultimate dissipation of highly supersonic turbulence produced in the ambient gas by the intensive gas outflow from a newly-born star. Due to the high brightness and small angular sizes of masing hot spots and the possibility of measuring their positions and velocities with high precision, they become a unique probe of supersonic turbulence.
We report the first detection of submillimeter water maser emission toward water-fountain nebulae, which are post-AGB stars that exhibit high-velocity water masers. Using APEX we found emission in the ortho-H2O (10_29-9_36) transition at 321.226 GHz
VLBA and EVN radio observations of H2O masers at 22 GHz and methanol masers at 6.7 GHz have been used to obtain images of the maser spots in the infrared object GL2789, which is associated with the young stellar object V645Cyg. The position of these
We performed simultaneous observations of the H2O 6(1,6) - 5(2,3) (22.235080 GHz) and SiO v= 1, 2, J = 1 - 0, SiO v = 1, J = 2 - 1, 3 - 2 (43.122080, 42.820587, 86.243442, and 129.363359 GHz) masers towards the suspected D-type symbiotic star, V627 C
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star forming clouds. This work presents a simple model for the structure of dense regions in turbulence in whi
Contradicting results have been reported in the literature with respect to the performance of the numerical techniques employed for the study of supersonic turbulence. We aim at characterising the performance of different particle-based and grid-base