ترغب بنشر مسار تعليمي؟ اضغط هنا

The EDELWEISS Experiment : Status and Outlook

83   0   0.0 ( 0 )
 نشر من قبل Sene Angele
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat and ionisation read- out to identify nuclear recoils induced by elastic collisions with WIMPs from the galactic halo. Results from the operation of 70 g and 320 g Ge detectors in the low-background environment of the Modane Underground Laboratory (LSM) are presented.



قيم البحث

اقرأ أيضاً

178 - L. Berge , I. Berkes , B. Chambon 1998
The status of the EDELWEISS experiment (underground dark matter search with heat-ionisation bolometers) is reviewed. Auspicious results achieved with a prototype 70 g Ge heat-ionisation detector under a 2 V reverse bias tension are discussed. Based o n gamma and neutron calibrations, a best-case rejection factor, over the 15-45 keV range, of 99.7 % for gammas, with an acceptance of 94 % for neutrons, is presented first. Some operational results of physical interest obtained under poor low radioactivity conditions follow. They include a raw event rate of around 30 events/day/kg/keV over the same energy range, and, after rejection of part of the background, lead to a conservative upper limit on the signal of approximately 1.6 events/day/kg/keV at a 90 % confidence level. Performance degrading surface effects of the detector are speculated upon; and planned upgrades are summarized.
229 - D.S. Parno 2013
The KATRIN experiment, presently under construction in Karlsruhe, Germany, will improve on previous laboratory limits on the neutrino mass by a factor of ten. KATRIN will use a high-activity, gaseous T2 source and a very high-resolution spectrometer to measure the shape of the high-energy tail of the tritium-decay beta spectrum. The shape measurement will also be sensitive to new physics, including sterile neutrinos and Lorentz violation. This report summarizes recent progress in the experiment.
51 - A. Rimoldi , A. DellAcqua 2003
The simulation of the ATLAS detector is a major challenge, given the complexity of the detector and the demanding environment of the LHC. The apparatus, one of the biggest and most complex ever designed, requires a detailed, flexible and, if possible , fast simulation which is needed already today to deal with questions related to design optimization, to issues raised by staging scenarios, and of course to enable detailed physics studies to lay the basis for the first physics discoveries. Scalability and robustness stand out as the most critical issues that are to be faced in the implementation of such a simulation. In this paper we present the status of the present simulation and the adopted solutions in terms of speed optimization, centralization of services, framework facilities and persistency solutions. Emphasis is put on the global performance when the different detector components are collected together in a full and detailed simulation. The reference tool adopted is Geant4.
126 - M.E. Convery 2016
We report on the status of the Fermilab accelerator complex, including recent performance, upgrades in progress, and plans for the future. Beam delivery to the neutrino experiments surpassed our goals for the past year. The Proton Improvement Plan is well underway with successful 15 Hz beam operation. Beam power of 700 kW to the NOvA experiment was demonstrated and will be routine in the next year. We are also preparing the Muon Campus to commission beam to the g-2 experiment.
We present new constraints on the couplings of axions and more generic axion-like particles using data from the EDELWEISS-II experiment. The EDELWEISS experiment, located at the Underground Laboratory of Modane, primarily aims at the direct detection of WIMPs using germanium bolometers. It is also sensitive to the low-energy electron recoils that would be induced by solar or dark matter axions. Using a total exposure of up to 448 kg.d, we searched for axion-induced electron recoils down to 2.5 keV within four scenarios involving different hypotheses on the origin and couplings of axions. We set a 95% CL limit on the coupling to photons $g_{Agamma}<2.13times 10^{-9}$ GeV$^{-1}$ in a mass range not fully covered by axion helioscopes. We also constrain the coupling to electrons, $g_{Ae} < 2.56times 10^{-11}$, similar to the more indirect solar neutrino bound. Finally we place a limit on $g_{Ae}times g_{AN}^{rm eff}<4.70 times 10^{-17}$, where $g_{AN}^{rm eff}$ is the effective axion-nucleon coupling for $^{57}$Fe. Combining these results we fully exclude the mass range $0.91,{rm eV}<m_A<80$ keV for DFSZ axions and $5.73,{rm eV}<m_A<40$ keV for KSVZ axions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا