ترغب بنشر مسار تعليمي؟ اضغط هنا

ISO Observations of Star-forming Galaxies

81   0   0.0 ( 0 )
 نشر من قبل Bahram Mobasher
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bahram Mobasher




اسأل ChatGPT حول البحث

The Infrared Space Observatory (ISO) is used to carry out mid-IR (7 and 15 micron) and far-IR (90 micron) observations of a sample of star-forming sub-mJy radio sources. By selecting the sample at radio wavelengths, one avoids biases due to dust obscuration. It is found that the mid-IR luminosities, covering the PAH features, measure the star formation rate for galaxies with $P_{1.4 GHz} < 10^{23}$ W Hz$^{-1}$. This is further confirmed using the H$alpha$ luminosities. The far-IR emission is also found to trace the SFR over the whole range of radio and H$alpha$ luminosities. The implication of the mid-IR measurements in estimating the SFRs from the future infrared space missions (SIRTF and ASTRO-F) is discussed.



قيم البحث

اقرأ أيضاً

Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we exa mine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the textit{Fermi Gamma-ray Space Telescope} (textit{Fermi}). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative $P$-values $lesssim0.05$ accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of $log(L_{0.1-100 rm{GeV}}/L_{1.4 rm{GHz}}) = 1.7 pm 0.1_{rm (statistical)} pm 0.2_{rm (dispersion)}$ and $log(L_{0.1-100 rm{GeV}}/L_{8-1000 murm{m}}) = -4.3 pm 0.1_{rm (statistical)} pm 0.2_{rm (dispersion)}$ for a galaxy with a star formation rate of 1 $M_{odot}$ yr$^{-1}$, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts $0<z<2.5$ above 0.1 GeV is estimated to be 0.4-2.4 $times 10^{-6}$ ph cm$^{-2}$ s$^{-1}$ sr$^{-1}$ (4-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that $sim10$ galaxies could be detected by their cosmic-ray induced gamma-ray emission during a 10-year textit{Fermi} mission.
117 - C. Mancuso , A. Lapi , Z-Y. Cai 2014
We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of star-forming galaxies detected by planned Square Kilometer Array (SKA) surveys. The evolving SFR function comes from recent models fitting the far-infrared (FIR) to millimeter-wave luminosity functions and the ultraviolet (UV) luminosity functions up to z=10, extended to take into account additional UV survey data. We used very deep 1.4 GHz number counts from the literature to check the relationship between SFR and synchrotron emission, and the 95 GHz South Pole Telescope (SPT) counts of dusty galaxies to test the relationship between SFR and free-free emission. We show that the SKA will allow us to investigate the SFRs of galaxies down to few Msun/yr up to z=10, thus extending by more than two orders of magnitude the high-z SFR functions derived from Herschel surveys. SKA1-MID surveys, down to microJy levels, will detect hundreds of strongly lensed galaxies per square degree; a substantial fraction of them will show at least two images above the detection limits.
We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11 M_sun. These observations confirm the lensing origin of these objects, allow us to measure the their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.
We present sensitive CO (J = 1 - 0) emission line observations of three metal-poor dwarf irregular galaxies Leo P (Z ~ 3% Z_Solar), Sextans A (Z ~ 7.5% Z_Solar), and Sextans B (Z ~ 7.5% Z_Solar), all obtained with the Combined Array for Millimeter-wa ve Astronomy (CARMA) interferometer. While no CO emission was detected, the proximity of the three systems allows us to place very stringent (4 sigma) upper limits on the CO luminosity (L_CO) in these metal-poor galaxies. We find the CO luminosities to be L_CO < 2900 K km/s pc^2 for Leo P, L_CO < 12400 K km/s pc^2 for Sextans A, and L_CO < 9700 K km/s pc^2 for Sextans B. Comparison of our results with recent observational estimates of the factor for converting between L_CO and the mass of molecular hydrogen, as well as theoretical models, provides further evidence that either the CO-to-H_2 conversion factor increases sharply as metallicity decreases, or that stars are forming in these three galaxies very efficiently, requiring little molecular hydrogen.
We investigate star formation along the Hubble sequence using the ISO Atlas of Spiral Galaxies. Using mid-infrared and far-infrared flux densities normalized by K-band flux densities as indicators of recent star formation, we find several trends. Fir st, star formation activity is stronger in late-type (Sc - Scd) spirals than in early-type (Sa - Sab) spirals. This trend is seen both in nuclear and disk activity. These results confirm several previous optical studies of star formation along the Hubble sequence but conflict with the conclusions of most of the previous studies using IRAS data, and we discuss why this might be so. Second, star formation is significantly more extended in later-type spirals than in early-type spirals. We suggest that these trends in star formation are a result of differences in the gas content and its distribution along the Hubble sequence, and it is these differences that promote star formation in late-type spiral galaxies. We also search for trends in nuclear star formation related to the presence of a bar or nuclear activity. The nuclear star formation activity is not significantly different between barred and unbarred galaxies. We do find that star formation activity appears to be inhibited in LINERs and transition objects compared to HII galaxies. The mean star formation rate in the sample is 1.4 Msun/yr based on global far-infrared fluxes. Combining these data with CO data gives a mean gas consumption time of 6.4 x 10^8 yr, which is ~5 times lower than the values found in other studies. Finally, we find excellent support for the Schmidt Law in the correlation between molecular gas masses and recent star formation in this sample of spiral galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا