ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Observations of SPT-Discovered, Strongly Lensed, Dusty, Star-Forming Galaxies

127   0   0.0 ( 0 )
 نشر من قبل Yashar Hezavehe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11 M_sun. These observations confirm the lensing origin of these objects, allow us to measure the their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.



قيم البحث

اقرأ أيضاً

Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensd dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope (SPT ). The sources were selected to have S_1.4mm>20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz<6mJy) or far-infrared counterparts (S_100um<1 Jy, S_60um<200mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of 12CO, 13CO, [CI], H2O, and H2O+. We find one or more spectral features in 23 sources yielding a ~90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for ~70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7<z<2.0. The resulting mean redshift of our sample is <z>=3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of <z>=2.3 and for which only 10-15% of the population is expected to be at z>3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.
We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, VLT, ATCA, APEX, and the SMA. We use high resolution imaging from HST to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 +/- 4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and - using molecular line fluxes - the excitation conditions within the ISM. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538-50, similar to local starburst galaxies, and unlike that seen in some other DSFGs at this epoch.
To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift ($2.8leq z leq 5.7$) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from ALMA observations. We have conducted follow-up observations, obtaining multi-wavelength imaging data, using {it HST}, {it Spitzer}, {it Herschel} and the Atacama Pathfinder EXperiment (APEX). We use the high-resolution {it HST}/WFC3 images to disentangle the background source from the foreground lens in {it Spitzer}/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and star formation rates (SFRs). The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value $sim$ 5 $times 10^{10}M_{Sun}$. The intrinsic IR luminosities range from 4$times 10^{12}L_{Sun}$ to 4$times 10^{13}L_{Sun}$. They all have prodigious intrinsic star formation rates of 510 to 4800 $M_{Sun} {rm yr}^{-1}$. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing the ongoing strong starburst events which may be driven by major mergers.
Nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high redshift galaxies by exploiting high-resolution and sensitivity X-ray and mm data to confirm their presence and relati ve role in contributing to the galaxy SEDs and energy budget. We present the data, model and analysis in the X-ray and mm bands for two strongly lensed galaxies, SDP.9 and SDP.11, selected in the Herschel-ATLAS catalogues as having an excess emission in the mid-IR regime at z>1.5, suggesting nuclear activity in the early stages of galaxy formation. We observed both of them in X-ray with Chandra and analyzed the high-resolution mm data available in the ALMA Science Archive for SDP9, and, by combining the information available, we reconstructed the source morphology. Both the targets were detected in the X-ray, strongly indicating the presence of highly obscured nuclear activity. High resolution ALMA observations for SDP9 in continuum and CO(6-5) spectral line allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates and to model the emission of the optical, mm, and X-ray band emission for this galaxy. We demonstrated that the X-ray emission is generated in the nuclear environment and it strongly support the presence of nuclear activity in this object. Hence, we identified weak nuclear activity associated with high-z galaxies with large star formation rates, useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous, high-z star forming galaxies than was possible so far. Given our results only for two objects, they solely cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path towards addressing the role of star formation and nuclear activity in forming galaxies.
77 - S. Dye , C. Furlanetto , L. Dunne 2017
We have modelled high resolution ALMA imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsi c properties of the lensed sub-millimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا