ﻻ يوجد ملخص باللغة العربية
We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of star-forming galaxies detected by planned Square Kilometer Array (SKA) surveys. The evolving SFR function comes from recent models fitting the far-infrared (FIR) to millimeter-wave luminosity functions and the ultraviolet (UV) luminosity functions up to z=10, extended to take into account additional UV survey data. We used very deep 1.4 GHz number counts from the literature to check the relationship between SFR and synchrotron emission, and the 95 GHz South Pole Telescope (SPT) counts of dusty galaxies to test the relationship between SFR and free-free emission. We show that the SKA will allow us to investigate the SFRs of galaxies down to few Msun/yr up to z=10, thus extending by more than two orders of magnitude the high-z SFR functions derived from Herschel surveys. SKA1-MID surveys, down to microJy levels, will detect hundreds of strongly lensed galaxies per square degree; a substantial fraction of them will show at least two images above the detection limits.
The missing baryons are usually thought to reside in galaxy filaments as warm-hot intergalactic medium (WHIM). From previous studies, giant radio galaxies are usually associated with galaxy groups, which normally trace the WHIM. We propose observatio
We study the synchrotron radio emission from extra-planar regions of star forming galaxies. We use ideal magneto-hydrodynamical (MHD) simulations of a rotating Milky Way-type disk galaxy with distributed star formation sites for three star formation
Radio-loud AGN (>10^{22} W/Hz at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total
The radio continuum spectra of 14 star-forming galaxies are investigated by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of ~325 MHz to 24.5 GHz (32 GHz i
Magnetic fields are an important ingredient of the interstellar medium (ISM). Besides their importance for star formation, they govern the transport of cosmic rays, relevant to the launch and regulation of galactic outflows and winds, which in turn a