ﻻ يوجد ملخص باللغة العربية
The reaction of collective oscillations excited in the interaction between aperiodically growing Jeans-type gravity perturbations and stars of a rapidly rotating disk of flat galaxies is considered. An equation is derived which describes the change in the main body of equilibrium distribution of stars in the framework of the nonresonant weakly nonlinear theory. Certain applications of the theory to the problem of relaxation of the Milky Way at radii where two-body relaxation is not effective are explored. The theory, as applied to the Solar neighborhood, accounts for observed features, such as the shape for the velocity ellipsoid of stars and the increase in star random velocities with age.
We investigate the Jeans instability of a galactic disk embedded in a dynamically responsive dark halo. It is shown that the disk-halo system becomes nominally Jeans unstable. On small scales the instability is suppressed, if the Toomre stability ind
We analyze the effect of a gravitational field on the sound modes of superfluids. We derive an instability condition that generalizes the well known Jeans instability of the sound mode in normal fluids. We discuss potential experimental implications.
We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields and cosmic rays are all initially in a magnetohydrostatic eq
In this letter we study the mean sizes of Halpha clumps in turbulent disk galaxies relative to kinematics, gas fractions, and Toomre Q. We use 100~pc resolution HST images, IFU kinematics, and gas fractions of a sample of rare, nearby turbulent disks
In this paper, we revisit the governing equations for linear magnetohydrodynamic (MHD) waves and instabilities existing within a magnetized, plane-parallel, self-gravitating slab. Our approach allows for fully non-uniformly magnetized slabs, which de