ﻻ يوجد ملخص باللغة العربية
In this paper, we revisit the governing equations for linear magnetohydrodynamic (MHD) waves and instabilities existing within a magnetized, plane-parallel, self-gravitating slab. Our approach allows for fully non-uniformly magnetized slabs, which deviate from isothermal conditions, such that the well-known Alfven and slow continuous spectra enter the description. We generalize modern MHD textbook treatments, by showing how self-gravity enters the MHD wave equation, beyond the frequently adopted Cowling approximation. This clarifies how Jeans instability generalizes from hydro to magnetohydrodynamic conditions without assuming the usual Jeans swindle approach. Our main contribution lies in reformulating the completely general governing wave equations in a number of mathematically equivalent forms, ranging from a coupled Sturm-Liouville formulation, to a Hamiltonian formulation linked to coupled harmonic oscillators, up to a convenient matrix differential form. The latter allows us to derive analytically the eigenfunctions of a magnetized, self-gravitating thin slab. In addition, as an example we give the exact closed form dispersion relations for the hydrodynamical p- and Jeans-unstable modes, with the latter demonstrating how the Cowling approximation modifies due to a proper treatment of self-gravity. The various reformulations of the MHD wave equation open up new avenues for future MHD spectral studies of instabilities as relevant for cosmic filament formation, which can e.g. use modern formal solution strategies tailored to solve coupled Sturm-Liouville or harmonic oscillator problems.
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is s
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor Instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensio
The intermittent small-scale structure of turbulence governs energy dissipation in many astrophysical plasmas and is often believed to have universal properties for sufficiently large systems. In this work, we argue that small-scale turbulence in acc
A high-order method to evolve in time electromagnetic and velocity fields in conducting fluids with non-periodic boundaries is presented. The method has a small overhead compared with fast FFT-based pseudospectral methods in periodic domains. It uses
The Jeans stability criterium for gravitational collapse is examined for the case of an inert binary mixture in local equilibrium, neglectinq dissipative effects. The corresponding transport equations are established using kinetic theory within the E