ترغب بنشر مسار تعليمي؟ اضغط هنا

The Parker Instability in Disk Galaxies

94   0   0.0 ( 0 )
 نشر من قبل Luiz Felippe Santiago Rodrigues
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields and cosmic rays are all initially in a magnetohydrostatic equilibrium. This is done for different choices of initial cosmic ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this non-ideal instability develops a multi-modal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step towards such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure maps, and the associated structure functions of the latter, from our simulations; these suggest that the correlation scales inferred from rotation measure maps are a possible probe for the cosmic ray content of a given galaxy. Our calculations highlight the importance of cosmic rays in these measures, making them an essential ingredient of realistic models of the interstellar medium.



قيم البحث

اقرأ أيضاً

In this letter we study the mean sizes of Halpha clumps in turbulent disk galaxies relative to kinematics, gas fractions, and Toomre Q. We use 100~pc resolution HST images, IFU kinematics, and gas fractions of a sample of rare, nearby turbulent disks with properties closely matched to z~1.5-2 main-sequence galaxies (the DYNAMO sample). We find linear correlations of normalized mean clump sizes with both the gas fraction and the velocity dispersion-to-rotation velocity ratio of the host galaxy. We show that these correlations are consistent with predictions derived from a model of instabilities in a self-gravitating disk (the so-called violent disk instability model). We also observe, using a two-fluid model for Q, a correlation between the size of clumps and self-gravity driven unstable regions. These results are most consistent with the hypothesis that massive star forming clumps in turbulent disks are the result of instabilities in self-gravitating gas-rich disks, and therefore provide a direct connection between resolved clump sizes and this in situ mechanism.
93 - Jongsoo Kim 1997
A linear stability analysis has been done to a magnetized disk under a linear gravity. We have reduced the linearized perturbation equations to a second-order differential equation which resembles the Schr{o}dinger equation with the potential of a ha rmonic oscillator. Depending on the signs of energy and potential terms, eigensolutions can be classified into ``continuum and ``discrete families. When magnetic field is ignored, the continuum family is identified as the convective mode, while the discrete family as acoustic-gravity waves. If the effective adiabatic index $gamma$ is less than unity, the former develops into the convective instability. When a magnetic field is included, the continuum and discrete families further branch into several solutions with different characters. The continuum family is divided into two modes: one is the original Parker mode, which is a slow MHD mode modulated by the gravity, and the other is a stable Alfven mode. The Parker modes can be either stable or unstable depending on $gamma$. When $gamma$ is smaller than a critical value $gamma_{cr}$, the Parker mode becomes unstable. The discrete family is divided into three modes: a stable fast MHD mode modulated by the gravity, a stable slow MHD mode modulated by the gravity, and an unstable mode which is also attributed to a slow MHD mode. The unstable discrete mode does not always exist. Even though the unstable discrete mode exists, the Parker mode dominates it if the Parker mode is unstable. However, if $gamma ge gamma_{cr}$, the discrete mode could be the only unstable one. When $gamma$ is equal $gamma_{cr}$, the minimum growth time of the unstable discrete mode is $1.3 times 10^8$ years with a corresponding length scale of 2.4 kpc. It is suggestive that the corrugatory features seen in the Galaxy and external galaxies are related to the unstable discrete mode.
The Parker instability, which has been considered as a process governing the structure of the interstellar medium, is induced by the buoyancy of magnetic field and cosmic rays. In previous studies, while the magnetic field has been fully incorporated in the context of isothermal magnetohydrodynamics, cosmic rays have been normally treated with the simplifying assumption of infinite diffusion along magnetic field lines but no diffusion across them. The cosmic ray diffusion is, however, finite. In this work, we take into account fully the diffusion process of cosmic rays in a linear stability analysis of the Parker instability. Cosmic rays are described with the diffusion-convection equation. With realistic values of cosmic ray diffusion coefficients expected in the interstellar medium, we show that the result of previous studies with the simplifying assumption on cosmic ray diffusion applies well. Finiteness of parallel diffusion decreases the growth rate of the Parker instability, while the relatively smaller perpendicular diffusion has no significant effect. We discuss the implication of our result on the role of the Parker instability in the interstellar medium.
136 - Yu-Ting Wu ASIAA , Taiwan 2015
N-body simulations of galactic collisions are employed to investigate the formation of elliptical rings in disk galaxies. The relative inclination between disk and dwarf galaxies is studied with a fine step of five degrees. It is confirmed that the e ccentricity of elliptical ring is linearly proportional to the inclination angle. Deriving from the simulational results, an analytic formula which expresses the eccentricity as a function of time and inclination angle is obtained. This formula shall be useful for the interpretations of the observations of ring systems, and therefore reveals the merging histories of galaxies.
We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the galaxy. A sample of disk galaxies from the CALIFA DR3 is considered. We adopted the Fourier amplitude A2 of the surface brightness as a quantitative characteristic of the strength of non-axisymmetric structures in a galactic disk, in addition to the commonly used morphologic division for A, AB, and B types based on the Hubble classification. To distinguish changes in local oxygen abundance caused by the non-axisymmetrical structures, the multiparametric mass--metallicity relation was constructed as a function of parameters such as the bar/spiral pattern strength, the disk size, color index g-r in the SDSS bands, and central surface brightness of the disk. The gas-phase oxygen abundance gradient is determined by using the R calibration. We find that there is no significant impact of the non-axisymmetric structures such as a bar and/or spiral patterns on the local oxygen abundance and radial oxygen abundance gradient of disk galaxies. Galaxies with higher mass, however, exhibit flatter oxygen abundance gradients in units of dex/kpc, but this effect is significantly less prominent for the oxygen abundance gradients in units of dex/R25 and almost disappears when the inner parts are avoided. We show that the oxygen abundance in the central part of the galaxy depends neither on the optical radius R25 nor on the color g-r or the surface brightness of the galaxy. Instead, outside the central part of the galaxy, the oxygen abundance increases with g-r value and central surface brightness of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا