ﻻ يوجد ملخص باللغة العربية
Cellular Automaton (CA) and an Integral Value Transformation (IVT) are two well established mathematical models which evolve in discrete time steps. Theoretically, studies on CA suggest that CA is capable of producing a great variety of evolution patterns. However computation of non-linear CA or higher dimensional CA maybe complex, whereas IVTs can be manipulated easily. The main purpose of this paper is to study the link between a transition function of a one-dimensional CA and IVTs. Mathematically, we have also established the algebraic structures of a set of transition functions of a one-dimensional CA as well as that of a set of IVTs using binary operations. Also DNA sequence evolution has been modelled using IVTs.
Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter, and features a global symmetry. One then extends th
In addition to the $lambda$ parameter, we have found another parameter which characterize the class III, class II and class IV patterns more quantitatively. It explains why the different classes of patterns coexist at the same $lambda$. With this par
The mechanism which discriminates the pattern classes at the same $lambda$, is found. It is closely related to the structure of the rule table and expressed by the numbers of the rules which break the strings of the quiescent states. It is shown that
In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle upda
Here the Integral Value Transformations (IVTs) are considered to be Discrete Dynamical System map in the spacemathbb{N}_(0). In this paper, the dynamics of IVTs is deciphered through the light of Topological Dynamics.