ﻻ يوجد ملخص باللغة العربية
The use of emergent constraints to quantify uncertainty for key policy relevant quantities such as Equilibrium Climate Sensitivity (ECS) has become increasingly widespread in recent years. Many researchers, however, claim that emergent constraints are inappropriate or even under-report uncertainty. In this paper we contribute to this discussion by examining the emergent constraints methodology in terms of its underpinning statistical assumptions. We argue that the existing frameworks are based on indefensible assumptions, then show how weakening them leads to a more transparent Bayesian framework wherein hitherto ignored sources of uncertainty, such as how reality might differ from models, can be quantified. We present a guided framework for the quantification of additional uncertainties that is linked to the confidence we can have in the underpinning physical arguments for using linear constraints. We provide a software tool for implementing our general framework for emergent constraints and use it to illustrate the framework on a number of recent emergent constraints for ECS. We find that the robustness of any constraint to additional uncertainties depends strongly on the confidence we can have in the underpinning physics, allowing a future framing of the debate over the validity of a particular constraint around the underlying physical arguments, rather than statistical assumptions.
Classical turning surfaces of Kohn-Sham potentials, separating classically-allowed regions (CARs) from classically-forbidden regions (CFRs), provide a useful and rigorous approach to understanding many chemical properties of molecules. Here we calcul
Bars have a complex three-dimensional shape. In particular their inner part is vertically much thicker than the parts further out. Viewed edge-on, the thick part of the bar is what is commonly known as a boxy-, peanut- or X- bulge and viewed face-on
Tablet computers are widely used by young children. A report in 2016 shows that children aged 5 to 15 years are spending more time online than watching TV. A 2017 update of the same report shows that parents are becoming more concerned about their ch
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales (where the
A neural network deployed in the wild may be asked to make predictions for inputs that were drawn from a different distribution than that of the training data. A plethora of work has demonstrated that it is easy to find or synthesize inputs for which