ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Measurements of CH Maser Emission and Its Abundance in Translucent Clouds

156   0   0.0 ( 0 )
 نشر من قبل Ningyu Tang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-sensitivity CH 9 cm ON/OFF observations toward 18 extra-galactic continuum sources that have been detected with OH 18 cm absorption in the Millennium survey with the Arecibo telescope. CH emission was detected toward six of eighteen sources. The excitation temperature of CH has been derived directly through analyzing all detected ON and OFF velocity components. The excitation temperature of CH 3335 MHz transition ranges from $-54.5$ to $-0.4$ K and roughly follows a log-normal distribution peaking within [$-$5, 0] K, which implies overestimation by 20% to more than ten times during calculating CH column density by assuming the conventional value of $-60$ or $-10$ K. Furthermore, the column density of CH would be underestimated by a factor of $1.32pm 0.03$ when adopting local thermal equilibrium (LTE) assumption instead of using the CH three hyperfine transitions. We found a correlation between the column density of CH and OH following log$N$(CH) = (1.80$pm$ 0.49) log$N$(OH) $-11.59 pm 6.87$. The linear correlation between the column density of CH and H$_2$ is consistent with that derived from visible wavelengths studies, confirming that CH is one of the best tracers of H$_2$ component in diffuse molecular gas.



قيم البحث

اقرأ أيضاً

Context. Insight into the conditions that drive the physics and chemistry in interstellar clouds is gained from determining the abundance and charge state of their components. Aims. We propose an evaluation of the C60:C60+ ratio in diffuse and transl ucent interstellar clouds that exploits electronic absorption bands so as not to rely on ambiguous IR emission measurements. Methods. The ratio is determined by analyzing archival spectra and literature data. Information on the cation population is obtained from published characteristics of the main diffuse interstellar bands attributed to C60+ and absorption cross sections already reported for the vibronic bands of the cation. The population of neutral molecules is described in terms of upper limit because the relevant vibronic bands of C60 are not brought out by observations. We revise the oscillator strengths reported for C60 and measure the spectrum of the molecule isolated in Ne ice to complete them. Results. We scale down the oscillator strengths for absorption bands of C60 and find an upper limit of approximately 1.3 for the C60:C60+ ratio. Conclusions. We conclude that the fraction of neutral molecules in the buckminsterfullerene population of diffuse and translucent interstellar clouds may be notable despite the non-detection of the expected vibronic bands. More certainty will require improved laboratory data and observations.
We present the results of the first complete survey of the Large and Small Magellanic Clouds for 6668-MHz methanol and 6035-MHz excited-state hydroxyl masers. In addition to the survey, higher-sensitivity targeted searches towards known star-formatio n regions were conducted. The observations yielded the discovery of a fourth 6668-MHz methanol maser in the Large Magellanic Cloud (LMC), found towards the star-forming region N160a, and a second 6035-MHz excited-state hydroxyl maser, found towards N157a. We have also re-observed the three previously known 6668-MHz methanol masers and the single 6035-MHz hydroxyl maser. We failed to detect emission from either transition in the Small Magellanic Cloud. All observations were initially made using the Methanol Multibeam (MMB) survey receiver on the 64-m Parkes telescope as part of the MMB project and accurate positions have been measured with the Australia Telescope Compact Array (ATCA). We compare the maser populations in the Magellanic Clouds with those of our Galaxy and discuss their implications for the relative rates of massive star-formation, heavy metal abundance, and the abundance of complex molecules. The LMC maser populations are demonstrated to be smaller than their Milky Way counterparts. Methanol masers are under-abundant by a factor of ~45, whilst hydroxyl and water masers are a factor of ~10 less abundant than our Galaxy.
Based on the analysis of available published data and archival data along 24 sightlines (5 of which are new) we derive more accurate estimates of the column densities of OH and CH towards diffuse/translucent clouds and revisit the typically observed correlation between the abundances of these species. The increase in the sample size was possible because of the equivalence of the column densities of CH derived from a combination of the transitions at 3137 & 3143 Angstrom, and a combination of transitions at 3886 & 3890 Angstrom, which we have demonstrated here. We find that with the exception of four diffuse clouds, the entire source sample shows a clear correlation between the column densities of OH and CH similar to previous observations. The analysis presented also verifies the theoretically predicted oscillator strengths of the OH A--X (3078 & 3082 Angstrom), CH B--X (3886 & 3890 Angstrom) and C--X (3137 & 3143 Angstrom) transitions. We estimate N(H) and N(H2) from the observed E(B-V) and N(CH) respectively. The N(OH)/N(CH) ratio is not correlated with the molecular fraction of hydrogen in the diffuse/translucent clouds. We show that with the exception of HD 34078 for all the clouds the observed column density ratios of CH and OH can be reproduced by simple chemical models which include gas-grain interaction and gas-phase chemistry. The enhanced N(OH)/N(CH) ratio seen towards the 3 new sightlines can be reproduced primarily by considering different cosmic ray ionization rates.
The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abund ances, relative to H2, of 11 molecules and additional isotopologues. We use absorption by optically thin transitions of c-C3H2 to estimate the N(H2), and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. We discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance; the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C:13C ratio, whereas H2CO/H2^13CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V.
This paper assesses the roles of the presence of warm H2, and the increased formation rate due to the ion-neutral drift. We performed ideal MHD simulations that include the heating and cooling of the multiphase ISM, and where we treat dynamically the formation of H2. In a post-processing step we compute the abundances of species at chemical equilibrium. We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low, but nevertheless higher than its equilibrium value, and where the gas temperature is high. We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude, up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities (vd). We find that the vd distribution peaks around 0.04 km s-1, and that high vd are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا