ﻻ يوجد ملخص باللغة العربية
Context. Insight into the conditions that drive the physics and chemistry in interstellar clouds is gained from determining the abundance and charge state of their components. Aims. We propose an evaluation of the C60:C60+ ratio in diffuse and translucent interstellar clouds that exploits electronic absorption bands so as not to rely on ambiguous IR emission measurements. Methods. The ratio is determined by analyzing archival spectra and literature data. Information on the cation population is obtained from published characteristics of the main diffuse interstellar bands attributed to C60+ and absorption cross sections already reported for the vibronic bands of the cation. The population of neutral molecules is described in terms of upper limit because the relevant vibronic bands of C60 are not brought out by observations. We revise the oscillator strengths reported for C60 and measure the spectrum of the molecule isolated in Ne ice to complete them. Results. We scale down the oscillator strengths for absorption bands of C60 and find an upper limit of approximately 1.3 for the C60:C60+ ratio. Conclusions. We conclude that the fraction of neutral molecules in the buckminsterfullerene population of diffuse and translucent interstellar clouds may be notable despite the non-detection of the expected vibronic bands. More certainty will require improved laboratory data and observations.
In the early 90s, C60+ was proposed as the carrier of two diffuse interstellar bands (DIBs) at 957.7 and 963.2 nm, but a firm identification still awaits gas-phase spectroscopic data. Neutral C60, on the other hand, was recently detected through its
The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abund
Gas phase spectroscopic laboratory experiments for the buckminsterfullerene cation C60+ resulted in accurate rest wavelengths for five C60+ transitions that have been compared with diffuse interstellar bands (DIBs) in the near infra-red. Detecting th
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atom
Due to recent advances in laboratory spectroscopy, the first optical detection of a very large molecule has been claimed in the diffuse interstellar medium (ISM): C60+ (ionized Buckminsterfullerene). Confirming the presence of this molecule would hav