ﻻ يوجد ملخص باللغة العربية
Based on the analysis of available published data and archival data along 24 sightlines (5 of which are new) we derive more accurate estimates of the column densities of OH and CH towards diffuse/translucent clouds and revisit the typically observed correlation between the abundances of these species. The increase in the sample size was possible because of the equivalence of the column densities of CH derived from a combination of the transitions at 3137 & 3143 Angstrom, and a combination of transitions at 3886 & 3890 Angstrom, which we have demonstrated here. We find that with the exception of four diffuse clouds, the entire source sample shows a clear correlation between the column densities of OH and CH similar to previous observations. The analysis presented also verifies the theoretically predicted oscillator strengths of the OH A--X (3078 & 3082 Angstrom), CH B--X (3886 & 3890 Angstrom) and C--X (3137 & 3143 Angstrom) transitions. We estimate N(H) and N(H2) from the observed E(B-V) and N(CH) respectively. The N(OH)/N(CH) ratio is not correlated with the molecular fraction of hydrogen in the diffuse/translucent clouds. We show that with the exception of HD 34078 for all the clouds the observed column density ratios of CH and OH can be reproduced by simple chemical models which include gas-grain interaction and gas-phase chemistry. The enhanced N(OH)/N(CH) ratio seen towards the 3 new sightlines can be reproduced primarily by considering different cosmic ray ionization rates.
Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio
This paper assesses the roles of the presence of warm H2, and the increased formation rate due to the ion-neutral drift. We performed ideal MHD simulations that include the heating and cooling of the multiphase ISM, and where we treat dynamically the
We have conducted OH 18 cm survey toward 141 molecular clouds in various environments, including 33 optical dark clouds, 98 Planck Galactic cold clumps (PGCCs) and 10 Spitzer dark clouds with the Arecibo telescope. The deviations from local thermal e
We report cosmic ray ionization rates towards ten reddened stars studied within the framework of the EDIBLES (ESO Diffuse Interstellar Bands Large Exploration Survey) program, using the VLT-UVES. For each sightline, between 2 and 10 individual rotati
The formation and evolution of cold diffuse clouds (CDCs), the parent objects of dense molecular clouds, affects both the star formation process and that of larger-scale galactic evolution. We have begun a pilot study of one CDCs dust content, with t