ﻻ يوجد ملخص باللغة العربية
To illustrate Boltzmanns construction of an entropy function that is defined for a single microstate of a system, we present here the simple example of the free expansion of a one dimensional gas of hard point particles. The construction requires one to define macrostates, corresponding to macroscopic observables. We discuss two different choices, both of which yield the thermodynamic entropy when the gas is in equilibrium. We show that during the free expansion process, both the entropies converge to the equilibrium value at long times. The rate of growth of entropy, for the two choice of macrostates, depends on the coarse graining used to define them, with different limiting behaviour as the coarse graining gets finer. We also find that for only one of the two choices is the entropy a monotonically increasing function of time. Our system is non-ergodic, non-chaotic and essentially non-interacting; our results thus illustrate that these concepts are not very relevant for the question of irreversibility and entropy increase. Rather, the notions of typicality, large numbers and coarse-graining are the important factors. We demonstrate these ideas through extensive simulations as well as analytic results.
We consider the non-equilibrium dynamics of the entanglement entropy of a one-dimensional quantum gas of hard-core particles, initially confined in a box potential at zero temperature. At $t=0$ the right edge of the box is suddenly released and the s
A mathematical procedure is suggested to obtain deformed entropy formulas of type K(S_K) = sum_i P_i K(-ln P_i), by requiring zero mutual K(S_K)-information between a finite subsystem and a finite reservoir. The use of this method is first demonstrat
In current experiments with cold quantum gases in periodic potentials, interference fringe contrast is typically the easiest signal in which to look for effects of non-trivial many-body dynamics. In order better to calibrate such measurements, we ana
We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we per
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semi-classical and quantum calculations in the th